Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115907
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.creatorXie, AAen_US
dc.creatorHou, Yen_US
dc.date.accessioned2025-11-13T07:04:41Z-
dc.date.available2025-11-13T07:04:41Z-
dc.identifier.issn0965-8564en_US
dc.identifier.urihttp://hdl.handle.net/10397/115907-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectNatural language processingen_US
dc.subjectPublic perceptionen_US
dc.subjectSentiment analysisen_US
dc.subjectShared autonomous vehiclesen_US
dc.subjectTransport policyen_US
dc.titleMining public perceptions of shared autonomous vehicles in China : interpreting the temporal evolution of sentiment through urban heterogeneityen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume203en_US
dc.identifier.doi10.1016/j.tra.2025.104746en_US
dcterms.abstractThe rapid deployment of shared autonomous vehicles (SAVs) in China raises pressing questions about public acceptance, yet systematic evidence on evolving public perceptions remains limited. Existing studies often focus on attitudinal surveys or single-platform analyses, overlooking the spatiotemporal heterogeneity of sentiment dynamics and their structural drivers. This study addresses these gaps by analyzing over 56,000 social media data from Sina Weibo, Xiaohongshu, and Douyin between 2022 and 2025. This study proposes an integrated framework combining various natural language processing (NLP) tools such as latent Dirichlet allocation (LDA), bidirectional encoder representations from transformers (BERT), and text network analysis (TNA) to capture thematic concerns and emotional trajectories. Six explanatory variables—policy support index, media campaign intensity, tech failure count, eco-transition input, AV test license count, and congestion index—are incorporated using Spearman’s correlation to diagnose city-specific sentiment drivers covering four pilot cities—Beijing, Shanghai, Shenzhen, and Wuhan—where SAVs have been commercially deployed. Findings reveal four salient themes: unemployment from automation, pricing and cost, safety and trust, and convenience and accessibility. Temporal sentiment streamgraphs highlight divergent urban trajectories: Beijing displays gradual but resilient optimism; Shanghai undergoes a biphasic reversal; Shenzhen demonstrates accelerating enthusiasm; and Wuhan experiences a sustained decline. Building on these patterns, this study advances a typology of urban SAV governance, distinguishing innovation-driven pioneering cities, policy-technology coupling cities, distrust-dominant cities, and governance-deficient cities. By linking discursive dynamics with structural variables, this study advances the methodological frontier of urban sentiment analysis and provides actionable insights for adaptive and context-sensitive SAV policy frameworks.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTransportation research. Part A. Policy and practice, Jan. 2026, v. 203, 104746en_US
dcterms.isPartOfTransportation research. Part A. Policy and practiceen_US
dcterms.issued2026-01-
dc.identifier.eissn1879-2375en_US
dc.identifier.artn104746en_US
dc.description.validate202511 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera4174-
dc.identifier.SubFormID52194-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.