Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115905
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorMao, Nen_US
dc.creatorGeng, Xen_US
dc.creatorLiu, Yen_US
dc.creatorHuang, Xen_US
dc.creatorHao, Men_US
dc.date.accessioned2025-11-13T06:57:33Z-
dc.date.available2025-11-13T06:57:33Z-
dc.identifier.issn0735-1933en_US
dc.identifier.urihttp://hdl.handle.net/10397/115905-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBattery degradationen_US
dc.subjectElectrochemical performanceen_US
dc.subjectLi-ion batteryen_US
dc.subjectOvercharge depthen_US
dc.subjectThermal stabilityen_US
dc.titleDegradation behavior and underlying mechanisms of electrochemical and thermal stability in Li(Ni₀.₅ Mn₀.₃Co₀.₂)O₂/graphite lithium-ion batteries under overcharge conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume170en_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2025.110029en_US
dcterms.abstractThis paper investigates the impact of overcharge on the electrochemical performance and thermal stability of Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion batteries (LIBs). The results show that deep overcharging reduces the usable capacity of the battery, primarily due to reactions between lithium deposition and O2 released from the cathode, as well as the reaction between lithium and H2O. The incremental capacity (IC) curve shows two-phase transition peaks at 100 %–140 % SOC, while only one peak appears at 155 % and 165 % SOC, which is attributed to the loss of active material (LAM). The internal resistance increases with SOC, and the lithium-ion diffusion coefficient decreases sharply, mainly due to the loss of lithium inventory (LLI) and LAM. At 165 % SOC, the impedance of the solid electrolyte interface (SEI) layer exceeds the ohmic resistance for the first time, and the electrode diffusion impedance reaches 3.4 Ω. Overcharging accelerates thermal runaway, occurring 23 h earlier at 165 % SOC than at 100 % SOC. This is mainly due to greater heat release from lithium deposition and the electrolyte at a lower threshold temperature, as well as decreased cathode thermal stability resulting from transition metal valence reconstruction and lattice oxygen release.en_US
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational communications in heat and mass transfer, Jan. 2026, v. 170, 110029en_US
dcterms.isPartOfInternational communications in heat and mass transferen_US
dcterms.issued2026-01-
dc.identifier.eissn1879-0178en_US
dc.identifier.artn110029en_US
dc.description.validate202511 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera4172-
dc.identifier.SubFormID52191-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the China Postdoctoral Science Foundation [Grant No. 2024M750414], the Jiangsu Funding Program for Excellent Postdoctoral Talent [Grant No. 2024ZD122], and the Nanjing Carbon Peak and Carbon Neutrality Science and Technology Innovation Project [Grant No. 202211009].en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.