Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115805
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Management-
dc.creatorYan, Xen_US
dc.creatorZhang, Yen_US
dc.creatorWeng, Fen_US
dc.creatorMa, Yen_US
dc.creatorLi, Hen_US
dc.creatorWang, Jen_US
dc.date.accessioned2025-11-03T08:20:18Z-
dc.date.available2025-11-03T08:20:18Z-
dc.identifier.issn1094-1665en_US
dc.identifier.urihttp://hdl.handle.net/10397/115805-
dc.language.isoenen_US
dc.publisherRoutledge, Taylor & Francis Groupen_US
dc.subjectH-temporal embeddingen_US
dc.subjectHoliday effecten_US
dc.subjectHoliformeren_US
dc.subjectResult interpretationen_US
dc.subjectTourism demand forecastingen_US
dc.titleDaily tourism demand forecasting based on a novel Holiformer algorithm : impact of holiday schedule embeddingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1080/10941665.2025.2511785en_US
dcterms.abstractForecasting tourism demand is crucial but challenging, especially with irregular and non-periodic holidays due to mismatches between lunar and Gregorian calendars and the transfer system. Current methods simplify holidays as dummy variables, overlooking their complex impacts on travel demand. This study introduces an H-temporal embedding technique to incorporate holiday schedules and timestamps and integrates it into the Transformer-based Holiformer model. Using multidimensional data, including holidays, weather, historical arrivals, and search engines, we forecast demand for three destinations before and during the COVID-19 pandemic. The experimental results demonstrate the high accuracy and stability of the Holiformer model. Furthermore, we conducted an in-depth analysis of the relationships between various influencing factors in the Holiformer model and tourist arrivals, revealing that the holiday effect in China has a more pronounced impact on tourist numbers than the holiday effect in the United States. This finding provides a new perspective for tourism demand forecasting.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAsia Pacific journal of tourism research, published online: 5 July 2025, Latest Articles, https://doi.org/10.1080/10941665.2025.2511785en_US
dcterms.isPartOfAsia Pacific journal of tourism researchen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105009976627-
dc.identifier.eissn1741-6507en_US
dc.description.validate202511 bcel-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000324/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by National Key Research and Development Program of China [grant number 2023YFB3308903] and the Humanities and Social Sciences of Ministry of Education Planning Fund [grant number 22YJA910004].en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo2027-01-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-01-05
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.