Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115793
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorNian, Yen_US
dc.creatorNi, YQen_US
dc.creatorAvcar, Men_US
dc.creatorYue, Ren_US
dc.creatorZhou, Ken_US
dc.date.accessioned2025-11-03T02:23:51Z-
dc.date.available2025-11-03T02:23:51Z-
dc.identifier.issn0141-0296en_US
dc.identifier.urihttp://hdl.handle.net/10397/115793-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEnergy absorptionen_US
dc.subjectGradient structureen_US
dc.subjectMechanical metamaterialen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectVariable Poisson's ratio (VPR)en_US
dc.titleNovel negative-zero-positive Poisson's ratio graded mechanical metamaterials for enhanced energy absorption : performance investigation and design optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume343en_US
dc.identifier.doi10.1016/j.engstruct.2025.121092en_US
dcterms.abstractA novel gradient mechanical metamaterial with a variable Poisson's ratio (VPR) integrated with thin-walled skin is proposed for enhanced energy absorption, demonstrating potential for impact mitigation applications. Constructed by stacking layers of a varying cellular structure, the proposed VPR structure exhibits the collapse permeability resistance of auxiliary materials and the lateral expansion of positive Poisson's ratio (PPR) materials in different regions. The concept is analyzed through numerical simulations of the impact loading on the proposed VPR structure, followed by experimental validation using 3D-printed specimens. To further enhance the energy absorption performance, the influential parameters of the VPR structure are rigorously optimized within a multi-objective optimization framework. The results demonstrate that the optimal VPR structure is more resistant to global buckling instability compared to a uniform negative Poisson's ratio (NPR) structure. Additionally, during compression energy absorption, the VPR structure distributes impact forces more evenly over a longer duration than the NPR structure of the same mass. Specifically, the DD-VPR type can increase specific energy absorption (SEA) by 60 % with only an 11 % increase in peak loading force (PLF), while the AD-VPR type can boost SEA by up to 67 % with a 20 % increase in PLF.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEngineering structures, 15 Nov. 2025, v. 343, pt. B, 121092en_US
dcterms.isPartOfEngineering structuresen_US
dcterms.issued2025-11-15-
dc.identifier.scopus2-s2.0-105012307200-
dc.identifier.eissn1873-7323en_US
dc.identifier.artn121092en_US
dc.description.validate202511 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000319/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe research is supported part by the research project fund provided by the Research Institute for Sustainable Urban Development ( RISUD ) at The Hong Kong Polytechnical University , and part by the fund from National Rail Transit Electrification and Automation Engineering Technology Research Centre (Hong Kong Branch).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.