Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115767
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorZheng, Zen_US
dc.creatorHe, Yen_US
dc.creatorWang, Zen_US
dc.creatorMa, Wen_US
dc.date.accessioned2025-10-28T07:25:30Z-
dc.date.available2025-10-28T07:25:30Z-
dc.identifier.issn1524-9050en_US
dc.identifier.urihttp://hdl.handle.net/10397/115767-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectData imputationen_US
dc.subjectHierarchical architectureen_US
dc.subjectMultiscale attentionen_US
dc.subjectPhysics-regularized neural networken_US
dc.subjectSpatiotemporal dependenciesen_US
dc.titleA physics-regularized multiscale attention network for spatiotemporal traffic data imputationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1109/TITS.2025.3595779en_US
dcterms.abstractSpatiotemporal traffic data imputation is a fundamental task in numerous smart mobility applications. Existing studies indicate that accurately estimating missing values from observed data relies on capturing the spatiotemporal dependencies in traffic data. However, such dependencies may exhibit distinct characteristics across varying spatiotemporal areas, such as local short-term traffic fluctuations versus global long-range periodic commuting patterns. The comprehensive multiscale nature of dependencies in traffic data, encompassing more than just local and global levels, has not been well explored in the literature. To address this issue, we propose a physics-regularized multiscale attention network (PRMAN) that hierarchically extracts spatiotemporal features from local dynamics to global trends. Specifically, the proposed PRMAN builds upon the novel Swin Transformer and introduces a hierarchical architecture that performs self-attention in local spatiotemporal windows. By systematically expanding the window size across layers, this hierarchical design explicitly addresses the distinct characteristics between local and global spatiotemporal dependencies at different scales. Meanwhile, a physics-regularized loss function is developed to align learned spatiotemporal dependencies with traffic dynamics described by the fundamental diagram. This improves the model's generalizability beyond the training data, ensuring robust performance on unseen datasets. Numerical experiments on multiple benchmark datasets demonstrate that our proposed PRMAN achieves state-of-the-art performance in handling diverse and complex missing data patterns. The code and model are publicly available at https://github.com/2222ad/PRMAN.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on intelligent transportation systems, Date of Publication: 11 Aug. 2025, Early Access, https://doi.org/10.1109/TITS.2025.3595779en_US
dcterms.isPartOfIEEE transactions on intelligent transportation systemsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105013307178-
dc.identifier.eissn1558-0016en_US
dc.description.validate202510 bcel-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000308/2025-09-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported in part by the National Natural Science Foundation of China under Grant 72101012, Grant 72394362, and Grant 72394363/72394360; and in part by the Research Grants Council of Hong Kong, SAR, China, under Project PolyU/152063222 and Project PolyU/15227424.en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.