Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115765
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWang, Qen_US
dc.creatorDuongthipthewa, Aen_US
dc.creatorZhang, Ren_US
dc.creatorLiu, Xen_US
dc.creatorZhang, Jen_US
dc.creatorLi, Xen_US
dc.creatorSu, Zen_US
dc.creatorZhou, Len_US
dc.date.accessioned2025-10-28T07:16:12Z-
dc.date.available2025-10-28T07:16:12Z-
dc.identifier.issn1359-835Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/115765-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectImpact monitoringen_US
dc.subjectPiezoresistive sensoren_US
dc.subjectSOC monitoringen_US
dc.subjectStructural batteryen_US
dc.titleImplantable graphene/PVA-coated glass fiber for real-time strain monitoring in structural batteries under electrochemical cycling and external loadingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume199en_US
dc.identifier.doi10.1016/j.compositesa.2025.109198en_US
dcterms.abstractHighly sensitive sensors integrated into structural batteries enable real-time monitoring of the strain state in the operation period, providing early warnings against thermal runaway and fire hazards in commercial energy storage devices. This study develops an implantable graphene-polyvinyl alcohol (PVA)-coated glass fiber sensor (GP-GFS) fabricated via dip-coating, for monitoring the strain of structural batteries induced by electrochemical cycling and external loading. The GP-GFS achieves exceptional sensitivity with a gauge factor of 8.6, ultralow strain detection limits (0.009 % tensile, 0.028 % flexural), and maintains 98.5 % piezoresistive responses over 2000 tensile cycles. Embedded within a four-layer glass fiber reinforced polymer composites-encapsulated lithium-ion (Li-ion) pouch cell, the GP-GFS placed across the pouch cell surface enables real-time tracking the internal strain arising from Li-ion intercalation/deintercalation during charge–discharge cycles. In addition, the GP-GFS can rapidly respond to external impact, enabling real-time detection of collision-induced microcracks in the structural battery. It addresses a critical gap in battery management systems (BMS), which remain insensitive to non-electrochemical mechanical perturbations. This work opens new avenues for enhancing the safety and reliability of next-generation energy storage systems by providing a simple yet effective monitoring approach.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationComposites part A: applied science and manufacturing, Dec. 2025, v. 199, 109198en_US
dcterms.isPartOfComposites part A: applied science and manufacturingen_US
dcterms.issued2025-12-
dc.identifier.scopus2-s2.0-105012555603-
dc.identifier.artn109198en_US
dc.description.validate202510 bcjzen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000296/2025-08-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is funded bythe Shenzhen Natural Science Foundation (Grant No.: JCYJ20220818100405012), and the Guangdong Pearl River Talent Program (Grant No.: 2021JC020054). This work also is supported by Research Grants Council of Hong Kong SAR (No.: N_PolyU597/24, 15214323 and 15200922), and Innovation and Technology Commission Hong Kong SAR (No.: KBBY1).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-12-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-12-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.