Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115737
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorSun, Ben_US
dc.creatorLu, Len_US
dc.creatorLyu, Nen_US
dc.date.accessioned2025-10-27T01:19:22Z-
dc.date.available2025-10-27T01:19:22Z-
dc.identifier.issn0960-1481en_US
dc.identifier.urihttp://hdl.handle.net/10397/115737-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBalustrade systemen_US
dc.subjectLow-carbon buildingen_US
dc.subjectMulti-physics modelingen_US
dc.subjectPhotovoltaicsen_US
dc.subjectSolar energyen_US
dc.titleVertical bifacial solar photovoltaic balustrades for low-carbon buildings : a numerical analysis of energy performanceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume256en_US
dc.identifier.doi10.1016/j.renene.2025.124027en_US
dcterms.abstractBifacial solar photovoltaic (PV) technologies are increasingly prominent in building applications due to their capacity to capture solar radiation on both sides. However, traditional bifacial PV systems face practical challenges in building integration, such as shading and structural load constraints. This paper introduces an innovative bifacial PV balustrade system that integrates vertical bifacial PV modules on rooftop edges, minimizing shading and enhancing cost-effectiveness for greater building applicability. A multi-physics numerical analysis was conducted to evaluate energy performance, considering parameters such as roof albedo, ground clearance, reflective width, and module orientation. Results indicate that roof albedo and module orientation are critical to both power output and bifacial gain. High roof albedo and east/west orientations enhance power output, while a north-facing configuration maximizes bifacial gain. A nationwide analysis reveals that PERC technology achieves an annual power output of 732–1786 kWh/kWp and a bifacial gain of 1.16–1.47, while HJT technology enhances these metrics by approximately 17 % and 30 %, respectively. Moreover, an optimized setup using HJT modules, reflective surfaces, and a roof albedo of 0.9 yields a maximum bifacial gain of 2.04. This study underscores the potential of high-performance bifacial PV modules as rooftop balustrades and provides valuable insights into their energy performance.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationRenewable energy, 1 Jan. 2026, v. 256, pt. B, 124027en_US
dcterms.isPartOfRenewable energyen_US
dcterms.issued2026-01-01-
dc.identifier.eissn1879-0682en_US
dc.identifier.artn124027en_US
dc.description.validate202510 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera4139-
dc.identifier.SubFormID52134-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the Hong Kong RGC General Research Fund (GRF) (Project No.15219323), The Hong Kong Polytechnic University Postdoc Matching Fund Scheme (project ID: P0043408), the Start-up Funding from Jiangsu University of Science and Technology (project ID: 1142932401) and The Hong Kong Polytechnic University Carbon Neutrality Funding Scheme (Project ID: P0050448).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-01-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-01-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.