Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115709
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorLu, Xen_US
dc.creatorLiu, Wen_US
dc.creatorAlomainy, Aen_US
dc.date.accessioned2025-10-23T06:46:16Z-
dc.date.available2025-10-23T06:46:16Z-
dc.identifier.issn1053-587Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/115709-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subject1-bit quantizationen_US
dc.subject1.5-bit quantizationen_US
dc.subjectDOA estimationen_US
dc.subjectLow-bit quantizationen_US
dc.titleA 1.5-bit quantization scheme and its application to direction estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1109/TSP.2025.3604889en_US
dcterms.abstractIn massive multiple-input multiple-output (MIMO) systems, the balance between cost and performance has made low-bit, especially 1-bit, analog-to-digital converters (ADCs) an indispensable part of the solution. In this paper, a three-level 1.5-bit ADC quantization scheme is proposed, which requires only one additional comparator beyond the 1-bit quantizer. Leveraging the Price theorem and Mehler’s formula, we derive the 1.5-bit correlation estimator and analyze the approximation error using a first-order Taylor expansion. Our findings reveal that, at low signal-to-noise ratios (SNRs), the eigenvalues of the 1.5-bit covariance matrix are nearly identical to those of the unquantized covariance matrix. This allows direct parameter estimation without the need to reconstruct the unquantized covariance. Moreover, we show that the approximation error for 1.5-bit measurements is much smaller than that of 1-bit quantization in high SNR conditions. Based on the derived correlation estimator, an algorithm is proposed for recovering the unquantized covariance matrix using a gradient descent method. Simulation results obtained by applying our proposed algorithm to DOA estimation show that, the 1.5-bit scheme is robust to the choice of the threshold value, and significantly outperforms 1-bit quantization without much increase in cost.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on signal processing, Date of Publication: 05 September 2025, Early Access, https://doi.org/10.1109/TSP.2025.3604889en_US
dcterms.isPartOfIEEE transactions on signal processingen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105015206908-
dc.identifier.eissn1941-0476en_US
dc.description.validate202510 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000281/2025-10-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by The Hong Kong Polytechnic University Start-Up Fund under Project P0053642 (corresponding author: Wei Liu).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.