Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115700
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorGeda, MWen_US
dc.creatorTang, YMen_US
dc.creatorLee, CKMen_US
dc.date.accessioned2025-10-23T04:20:13Z-
dc.date.available2025-10-23T04:20:13Z-
dc.identifier.issn0098-3063en_US
dc.identifier.urihttp://hdl.handle.net/10397/115700-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectDecision supporten_US
dc.subjectE-commerceen_US
dc.subjectGroup recommender systemen_US
dc.subjectMetaverseen_US
dc.subjectRecommender systemen_US
dc.titleIntelligent group recommendations for metaverse e-commerce platforms for enhanced retail and consumer experiencesen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Visual Intelligence in Metaverse Environment for E-commerce using Group Recommendationen_US
dc.identifier.doi10.1109/TCE.2025.3608286en_US
dcterms.abstractThe advent of immersive social platforms introduces new challenges and opportunities for computational modeling of group dynamics and personalization of metaverse commerce. This research proposes an intelligent group recommender system (GRS) algorithm that analyze collective user behaviors and preferences to enhance customer shopping experiences. The proposed GRS integrates demographic-based clustering to determine user groups and then aggregates their preferences to generate tailored recommendations. We conduct a simulation case study to demonstrate the applicability of the proposed approach. The results show the GRS identifies heterogeneity within clusters based on demographics and product preferences. Our findings reveal that the integrated GRS in a metaverse commerce platform not only enhances the retailing experience by accurately matching products with group preferences but also provides actionable intelligence for businesses in crafting targeted strategies. This study advances the emerging field of intelligent recommender systems by integrating group modelling, preference aggregation, and immersive technologies to enable next-generation personalization and automation in e-commerce platforms.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationIEEE transactions on consumer electronics, Date of Publication: 10 September 2025, Early Access, https://doi.org/10.1109/TCE.2025.3608286en_US
dcterms.isPartOfIEEE transactions on consumer electronicsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105015661060-
dc.identifier.eissn1558-4127en_US
dc.description.validate202510 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000267/2025-10-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was funded by the Laboratory for Artificial Intelligence in Design (Project Code: RP2-1) under the InnoHK Research Clusters, Hong Kong Special Administrative Region Government, China.en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.