Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115662
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorWeng, Jen_US
dc.creatorYang, Yen_US
dc.creatorZhuang, Ken_US
dc.creatorTo, Sen_US
dc.creatorYip, WSen_US
dc.date.accessioned2025-10-17T02:24:14Z-
dc.date.available2025-10-17T02:24:14Z-
dc.identifier.issn0020-7403en_US
dc.identifier.urihttp://hdl.handle.net/10397/115662-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectAbrasive jet machiningen_US
dc.subjectAnalytical modelen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectEdge honingen_US
dc.subjectHybrid modelen_US
dc.subjectMilling toolen_US
dc.titlePrediction of milling tool edge honing in abrasive jet machiningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume302en_US
dc.identifier.doi10.1016/j.ijmecsci.2025.110597en_US
dcterms.abstractEdge honing is crucial in cutting tool production to enhance performance by removing micro defects and creating a honed edge profile. Wet abrasive jet machining (WAJM) is a popular method for edge honing, though challenging to observe due to the high abrasive impact speeds and small deformation areas. This study proposes a novel hybrid model to predict the WAJM-based edge honing process, revealing the relationship between WAJM parameters and the honed edge geometry of milling tools. The model begins from the non-uniform-distribution modeling of particle velocity and density using computational fluid dynamics (CFD). The material removal process for a single abrasive impacting a flat surface is calculated based on Hertz contact and kinetic energy theorem, and further refined to determine the material removal volume on a topographic surface by considering particle-surface contact points. By integrating CFD simulation results with an analytical model, the dynamic edge honing process is predicted using the Monte Carlo method. The model successfully simulates the transition from a sharp tool tip to a relatively rounded edge without predefined edge geometry. WAJM experiments on milling tools indicate excellent model performance, with a maximum Euclidean distance between predicted and measured curves of <1 µm. Additionally, the average prediction errors for edge segments on the rake face and flank face are 8% and 12.3%, respectively. The study thoroughly discusses the effects of nozzle pressure and traverse speed on edge geometry, providing valuable guidance for the cutting tool production.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of mechanical sciences, 15 Sept 2025, v. 302, 110597en_US
dcterms.isPartOfInternational journal of mechanical sciencesen_US
dcterms.issued2025-09-15-
dc.identifier.scopus2-s2.0-105010555397-
dc.identifier.eissn1879-2162en_US
dc.identifier.artn110597en_US
dc.description.validate202510 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000238/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors appreciate the financial support from the State Key Laboratories in Hong Kong from the Innovation and Technology Commission (ITC) of the Government of the Hong Kong Special Administrative Region (HKSAR), China (BBX5 and BBR3) and the Research Committee of the Hong Kong Polytechnic University (W33X), as well as the National Natural Science Foundation of China (52475529).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.