Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115648
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorResearch Centre of Textiles for Future Fashionen_US
dc.contributorResearch Institute for Sports Science and Technologyen_US
dc.creatorWu, Yen_US
dc.creatorPu, Yen_US
dc.creatorShahzad, Aen_US
dc.creatorZhang, Hen_US
dc.creatorYuan, Len_US
dc.creatorKang, Zen_US
dc.creatorFan, Jen_US
dc.date.accessioned2025-10-13T01:56:39Z-
dc.date.available2025-10-13T01:56:39Z-
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/115648-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectEvaporative coolingen_US
dc.subjectEvaporation edge effecten_US
dc.subjectPersonal cooling garmenten_US
dc.subjectSweat managementen_US
dc.subjectThermal comforten_US
dc.subjectVascular patternen_US
dc.titleLeaf vascular patterned fabric for advanced liquid sweat managementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/adfm.202513020en_US
dcterms.abstractSweat evaporation is essential for heat dissipation and thermal comfort during intense activities or hot conditions. Existing moisture management textiles (MMTs) facilitate sweat transport and evaporation but struggle under heavy sweating, leading to next-to-skin stickiness discomfort and potential health risks caused by clammy chill. Inspired by the high liquid transportation efficiency of the plant vascular system, here a novel vascular cool fabric is proposed with a structure that mimics leaf veins to distribute sweat to a wider region for enhanced evaporative cooling while minimizing wetness discomfort. Experimental results show that the vascular cool fabric has 54.2% higher evaporation rate per unit wet area and 18% higher drying efficiency in comparison with a fully wet fabric surface, thanks to the evaporation edge effect at the wet–dry interface. Human wear trails in hot and humid environments confirm that a T-shirt made of the vascular cool fabric exhibited 15% less sweat accumulation and a 24.1% improvement in overall comfort (p < 0.05) (lighter, drier, less sticky, and less stuffy) compared to conventional moisture management fabric. The proposed vascular pattern is easily applied to various fabric substrates, offering promising potential for future thermal-wet comfort applications.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced functional materials, First published: 19 September 2025, Early View, e13020, https://doi.org/10.1002/adfm.202513020en_US
dcterms.isPartOfAdvanced functional materialsen_US
dcterms.issued2025-
dc.identifier.eissn1616-3028en_US
dc.identifier.artne13020en_US
dc.description.validate202510 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera4115-
dc.identifier.SubFormID52102-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by the General Research Fund of HKSAR(Ref: 15216722), and the Hong Kong Polytechnic University (52YC, 8883,CD6M, BBEV).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.