Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115627
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorSong, Zen_US
dc.creatorHao, Jen_US
dc.date.accessioned2025-10-10T00:19:36Z-
dc.date.available2025-10-10T00:19:36Z-
dc.identifier.issn0022-1120en_US
dc.identifier.urihttp://hdl.handle.net/10397/115627-
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.rights© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.en_US
dc.rightsThe following publication Song, Z., & Hao, J. (2025). Instabilities in shock-wave–boundary-layer interactions at Mach 6. Journal of Fluid Mechanics, 1019, A28 is available at https://doi.org/10.1017/jfm.2025.10597.en_US
dc.subjectAbsolute/convective instabilityen_US
dc.subjectBoundary layer stabilityen_US
dc.subjectShock wavesen_US
dc.titleInstabilities in shock-wave-boundary-layer interactions at Mach 6en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume1019en_US
dc.identifier.doi10.1017/jfm.2025.10597en_US
dcterms.abstractThe flow instabilities in shock-wave–boundary-layer interactions at Mach 6 are comprehensively investigated through compression corner and incident shock cases. The boundary of global stability and the characteristics of globally unstable modes are determined by global stability analysis. In resolvent analysis, cases are categorized into flat plate, no separation, small separation and large separation flows. The optimal response shifts from the first mode in the flat plate case to streaks after the amplification in the interaction region. The amplification of streaks and the first mode (oblique mode) are both attributed to the Görtler instability. Meanwhile, the second mode exhibits minimal growth and higher Mack’s modes appear within the separation bubble. Rounded corner case and linear stability analysis are utilized to further validate the amplification mechanism of the oblique mode.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of fluid mechanics, 25 Sept 2025, v. 1019, A28en_US
dcterms.isPartOfJournal of fluid mechanicsen_US
dcterms.issued2025-09-25-
dc.identifier.scopus2-s2.0-105016317143-
dc.identifier.eissn1469-7645en_US
dc.identifier.artnA28en_US
dc.description.validate202510 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TA-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by the National Natural Science Foundation of China (no. 12102377) and the Hong Kong Research Grants Council (nos. 15204322 and 25203721).en_US
dc.description.pubStatusPublisheden_US
dc.description.TACUP (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Instabilities_Shock_Wave.pdf3.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.