Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115621
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorFeng, S-
dc.creatorZheng, X-
dc.creatorShi, P-
dc.creatorLy, TH-
dc.creatorZhao, J-
dc.creatorXu, Z-
dc.date.accessioned2025-10-08T03:41:53Z-
dc.date.available2025-10-08T03:41:53Z-
dc.identifier.issn0022-5096-
dc.identifier.urihttp://hdl.handle.net/10397/115621-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subject2D crystalsen_US
dc.subjectCrack interactionen_US
dc.subjectFracture patternsen_US
dc.subjectInterlayer couplingen_US
dc.subjectLinear elastic fracture mechanicsen_US
dc.subjectShear-lag modelen_US
dc.titleCooperative cracks in layered crystalsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume203-
dc.identifier.doi10.1016/j.jmps.2025.106242-
dcterms.abstractThe pattern development of multiple cracks in bilayer or multilayer 2D crystals encompasses rich yet largely unexplored physics. We study crack interactions across neighboring 2D layers using in situ scanning transmission electron microscopy and molecular dynamics simulations. In bilayer 2D crystals, parallel cracks attract while anti-parallel (‘En-Passant’) cracks repel, sharply contrasting with co-planar cracks. Beyond fracture toughening, interlayer slip alters crack driving forces by adding an antisymmetric shear component to the stress intensity factor. Supported by experimental observations and simulation results, we present a theoretical framework that integrates linear elastic fracture mechanics with the shear-lag model to guide the engineering of fracture patterns and improvement of material resistance to cracking.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of the mechanics and physics of solids, Oct. 2025, v. 203, 106242-
dcterms.isPartOfJournal of the mechanics and physics of solids-
dcterms.issued2025-10-
dc.identifier.scopus2-s2.0-105009635586-
dc.identifier.artn106242-
dc.description.validate2510 bchy-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000197/2025-07en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextWe acknowledge financial support from the National Natural Science Foundation of China through grants 12425201, 52090032, 52173230, and 12402128, theNational Key Basic Research Program of China grant No. 2022YFA1205400, the China Postdoctoral Science Foundation through grant GZC20241129, and the Hong Kong Research Grant Council General Research Fund through grants 15302522 and 15301623. The computation was performed on the Explorer 1000 cluster system of the Tsinghua National Laboratory for Information Science and Technology.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.