Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115614
PIRA download icon_1.1View/Download Full Text
Title: ChatMolData : a multimodal agent for automatic molecular data processing
Authors: Yu, Y
Wang, H
Zong, L
Chen, B
Li, Y 
Yu, X
Issue Date: 2025
Source: Advanced intelligent systems, First published: 29 May 2025, Early View, 2401089, https://doi.org/10.1002/aisy.202401089
Abstract: In recent years, the development of large language models (LLMs) has revolutionized various fields of natural science. However, their application in dealing with various molecular data remains constrained due to the reliance on single-modality inputs and outputs. ChatMolData, a novel LLM-based multimodal agent designed to handle diverse molecular data forms, including molecular databases, images, structure-specific files, and unstructured and structured documents, is introduced. ChatMolData integrates the capabilities of LLMs (e.g., GPT-4 and GPT-3.5) with the robust toolset that supports data retrieval, structuring, prediction, visualization, and search tasks. The agent employs a systematic cycle of reasoning and action to efficiently process complex tasks in molecular science. The evaluation demonstrates that ChatMolData achieves over 90% accuracy for 128 diverse tasks, effectively bridging the gap between experimenters and computational tools. Moreover, it is anticipated that the multimodal-agent strategy provides a pathway to expand data size and improve data accessibility, ultimately promoting molecular research and innovation.
Keywords: Cheminformatics
Data mining
Large language models
Multimodal agents
Publisher: Wiley-VCH Verlag GmbH & Co. KGaA
Journal: Advanced intelligent systems 
EISSN: 2640-4567
DOI: 10.1002/aisy.202401089
Rights: © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The following publication Yu, Y., Wang, H., Zong, L., Chen, B., Li, Y. and Yu, X. (2025), ChatMolData: A Multimodal Agent for Automatic Molecular Data Processing. Adv. Intell. Syst. 2401089 is available at https://doi.org/10.1002/aisy.202401089.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yu_ChatMolData_Multimodal_Agent.pdf2.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.