Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115530
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.contributorResearch Institute for Future Food-
dc.contributorResearch Centre for Deep Space Explorations-
dc.creatorYang, AH-
dc.creatorMa, Y-
dc.creatorHuang, R-
dc.creatorChua, SL-
dc.date.accessioned2025-10-06T01:54:09Z-
dc.date.available2025-10-06T01:54:09Z-
dc.identifier.urihttp://hdl.handle.net/10397/115530-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectBacteriaen_US
dc.subjectCaenorhabditis elegansen_US
dc.subjectMicroplasticsen_US
dc.subjectPollutionen_US
dc.subjectPredator−prey interactionsen_US
dc.titleMicroplastics alter predator preferences of prey through associative learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1032-
dc.identifier.epage1037-
dc.identifier.volume12-
dc.identifier.issue8-
dc.identifier.doi10.1021/acs.estlett.5c00492-
dcterms.abstractMicroplastics (MPs) are pervasive environmental pollutants that pose significant threats to wildlife health and ecological interactions. While the toxicological impacts of MPs are increasingly recognized, their influence on animal behavior─particularly feeding preferences─remains underexplored. In this study, we investigated whether animals can discriminate between MP-contaminated (“dirty”) and uncontaminated (“clean”) food sources and whether such preferences can be shaped by experience. Using the model nematode Caenorhabditis elegans, we found that individuals preferentially consumed clean bacterial prey over MP-contaminated prey via olfactory cues mediated by the odr-10 gene. Strikingly, prolonged multigenerational exposure to MP-contaminated prey led to a reversal of this preference: the progeny of exposed worms developed a learned attraction to dirty food, a phenomenon absent in associative learning-deficient mutants (lrn-1). Soil microcosm experiments confirmed that MP contamination influenced predator foraging behavior with nematodes migrating toward cleaner prey patches. Our findings reveal that microplastic pollution can reprogram predator feeding preferences through associative learning and transgenerational inheritance, with broad implications for trophic dynamics and the ecological impact of plastic contamination.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnvironmental science and technology letters, 12 Aug. 2025, v. 12, no. 8, p. 1032-1037-
dcterms.isPartOfEnvironmental science and technology letters-
dcterms.issued2025-08-12-
dc.identifier.scopus2-s2.0-105010226109-
dc.identifier.eissn2328-8930-
dc.description.validate202510 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000161/2025-08en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by Environment and Conservation Fund (84/2021), Health and Medical Research Fund (HMRF-23220372), Research Centre of Deep Space Explorations (BBFQ and BBCZ), and Pneumoconiosis Compensation Fund Board (PCFB-ZJN2).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-07-10en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-10
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.