Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115528
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributorResearch Centre for Resources Engineering towards Carbon Neutralityen_US
dc.creatorZhu, Len_US
dc.creatorShi, Men_US
dc.creatorLyu, Hen_US
dc.creatorLiu, Yen_US
dc.creatorZhang, Sen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2025-10-03T02:56:19Z-
dc.date.available2025-10-03T02:56:19Z-
dc.identifier.issn0008-8846en_US
dc.identifier.urihttp://hdl.handle.net/10397/115528-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectC<sub>2</sub>Sen_US
dc.subjectHeavy metalsen_US
dc.subjectLow-carbon binder systemen_US
dc.subjectThermodynamic modelingen_US
dc.subjectTwo-step designen_US
dc.titleInnovative two-step synthesis design approach in developing vanadium incorporated low-carbon binder systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume197en_US
dc.identifier.doi10.1016/j.cemconres.2025.107977en_US
dcterms.abstractA novel two-step synthesis approach was developed to create a low-carbon C2S binder system incorporating vanadium, utilizing thermodynamic modeling and subsequent experimental validation. The modeling identified 1 wt% V2O5 as the ideal dosage since excessive V2O5 led to Ca2V2O7 generation, depleting CaO in C2S phases. Additionally, 1400 °C was the optimal clinkering temperature for C2S synthesis as higher temperatures favored C3S formation while lower temperatures reduced the C2S content. Experiments confirmed that clinkering at 1400 °C could produce high β-C2S content in V2O5-doped binders, with V5+ ions stabilizing β-C2S and inhibiting its transformation to γ-C2S. Small amounts of Ca2V2O7 formation during clinkering could also promote the V2O5 passivation. After 1-day carbonation, vanadium-dosed pastes prepared at 1400 °C possessed low porosity and dense morphologies, contributing to superior strength by forming CaCO3 and gel phases. This approach offers a sustainable direction to maximize the performance of low-carbon binder systems by recycling heavy metal-derived solid wastes.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCement and concrete research, Nov. 2025, v. 197, 107977en_US
dcterms.isPartOfCement and concrete researchen_US
dcterms.issued2025-11-
dc.identifier.scopus2-s2.0-105008930236-
dc.identifier.eissn1873-3948en_US
dc.identifier.artn107977en_US
dc.description.validate202510 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000214/2025-07-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe work described in this paper was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU 15226022) and the National Natural Science Foundation of China (52308283).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.