Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115525
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHan, Men_US
dc.creatorBai, Zen_US
dc.creatorLou, Yen_US
dc.date.accessioned2025-10-03T00:33:25Z-
dc.date.available2025-10-03T00:33:25Z-
dc.identifier.issn0022-2526en_US
dc.identifier.urihttp://hdl.handle.net/10397/115525-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectAsymptotic behavioren_US
dc.subjectGlobal threshold dynamicsen_US
dc.subjectMosquito-borne diseaseen_US
dc.subjectNonlocal dispersalen_US
dc.subjectRoss–macdonald Modelen_US
dc.titleGlobal dynamics of a partially degenerate nonlocal model for mosquito-borne disease transmissionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume155en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1111/sapm.70101en_US
dcterms.abstractHost mobility and environmental heterogeneity in vector populations are critical determinants of spatial patterns in mosquito-borne disease transmission. To investigate the impact of spatial heterogeneity and host dispersal on transmission dynamics, this manuscript proposes a partially degenerate nonlocal dispersal Ross–Macdonald model. The basic reproduction number (Formula presented.) is identified as a critical threshold that determines the global dynamics of the model. The analytical challenge of noncompact solution map of this partially degenerate nonlocal model is addressed using comparison arguments for the phase space of Lebesgue measurable and bounded functions. Furthermore, we characterize the asymptotic behavior of (Formula presented.) under small and large diffusion regimes, linking dispersal rates to transmission potential. Numerical simulations reveal how host mobility and spatially varying environment modulate disease persistence and transmission risks. Simulations also indicate that the model assuming local dispersal may underestimate transmission risks, and the epidemic size does not monotonically increase with (Formula presented.).en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationStudies in applied mathematics, Aug. 2025, v. 155, no. 2, e70101en_US
dcterms.isPartOfStudies in applied mathematicsen_US
dcterms.issued2025-08-
dc.identifier.scopus2-s2.0-105013965139-
dc.identifier.eissn1467-9590en_US
dc.identifier.artne70101en_US
dc.description.validate202510 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000129/2025-09-
dc.description.fundingSourceSelf-fundeden_US
dc.description.fundingTextWe sincerely thank Prof. X.\u2010Q. Zhao and Dr. Lei Zhang for helpful discussions. Bai's research was supported by the NSF of China (No. 12371501) and Xidian University Specially Funded Project for Interdisciplinary Exploration (No. TZJH2024001). Lou is partially supported by The Hong Kong Research Grants Council (15304821).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.