Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115498
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorLi, J-
dc.creatorYe, J-
dc.creatorZhang, D-
dc.creatorHu, X-
dc.creatorLin, S-
dc.creatorChen, X-
dc.creatorFeng, Y-
dc.creatorYang, C-
dc.creatorCui, Q-
dc.creatorCai, Q-
dc.creatorCao, Q-
dc.creatorHe, H-
dc.creatorYe, Z-
dc.creatorHe, Q-
dc.creatorYin, J-
dc.creatorDai, X-
dc.creatorPan, J-
dc.date.accessioned2025-10-02T03:37:29Z-
dc.date.available2025-10-02T03:37:29Z-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10397/115498-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectCsPbI3en_US
dc.subjectLight-emitting diodesen_US
dc.subjectPerovskite quantum dotsen_US
dc.subjectRare earth ionen_US
dc.titleErbium-anchoring surface engineering enables dual-shell stabilized CsPbI₃ quantum dots for efficient pure-red light-emitting diodesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage10656-
dc.identifier.epage10665-
dc.identifier.volume25-
dc.identifier.issue26-
dc.identifier.doi10.1021/acs.nanolett.5c02431-
dcterms.abstractSmall-sized CsPbI3 quantum dots (QDs) are promising emitters for pure-red perovskite light-emitting diodes (PeLEDs), yet their surface instability and defect formation hinder practical applications. Herein, we propose a surface doping strategy using erbium (Er3+) to enhance QD stability and suppress defects, in which Er3+ ions anchor to the QD surface via strong coordination with surface iodide and oleic acid, forming a robust organic–inorganic dual-shell coordination structure that significantly inhibits undesirable degradation and Oswald ripening throughout the synthesis and purification processes. The Er-doped QDs (Er-QDs) deliver higher color purity with pure-red emission, near-unity photoluminescence quantum yield, and enhanced charge transport. Consequently, PeLEDs based on Er-QDs achieve a peak external quantum efficiency over 25% with stable emission (Commission on Illumination (CIE) 0.708, 0.292), meeting the Rec.2020 standard even under high driving voltages. This work offers a viable surface engineering strategy to stabilize perovskite QDs, enabling their application in high-performance optoelectronic devices.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNano letters, 2 July 2025, v. 25, no. 26, p. 10656-10665-
dcterms.isPartOfNano letters-
dcterms.issued2025-07-02-
dc.identifier.scopus2-s2.0-105009015585-
dc.identifier.eissn1530-6992-
dc.description.validate202510 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000191/2025-07en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work supported by National Natural Science Foundation of China (52172160, 62422512, 21805181, 22375179 and U22A20133), Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-C2022005), National Key Research and Development Project of China (2023YFB3608902), “Pioneer” and “Leading Goose” R&d Program of Zhejiang (2024C01191), Hong Kong Polytechnic University (P0042930, P0053027 and P0053682), and Research Grants Council of the Hong Kong Special Administrative (SAR) Region, China (Project No. PolyU 25300823 and PolyU 15300724).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-06-20en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-06-20
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.