Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115495
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorBian, Ten_US
dc.creatorDu, Ten_US
dc.creatorLei, Qen_US
dc.creatorYin, Jen_US
dc.date.accessioned2025-10-02T02:48:22Z-
dc.date.available2025-10-02T02:48:22Z-
dc.identifier.issn0897-4756en_US
dc.identifier.urihttp://hdl.handle.net/10397/115495-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.titleDeciphering the facet-dependent degradation mechanism of hybrid perovskites by machine learning potentialsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5099en_US
dc.identifier.epage5108en_US
dc.identifier.volume37en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1021/acs.chemmater.5c00686en_US
dcterms.abstractTo elucidate the microscopic mechanisms underlying moisture-induced degradation in perovskite materials, we developed a machine learning potential capable of describing the interactions between various facets of formamidinium lead iodide (FAPbI3) and water with a density functional theory level accuracy. Among the studied (100), (110), (111), and (210) facets, we find that the (100) facet with a PbI2-rich termination exhibits superior intrinsic moisture resistance. This stability arises from two critical mechanisms: (i) our newly introduced structural descriptor, the molecular orientation index, reveals that FA molecules on PbI2-rich (100) show enhanced resistance to water perturbation and (ii) this surface forms significantly fewer hydrogen bonds with water molecules compared to other facets. Furthermore, the (100) facet undergoes a unique layer-by-layer degradation process, a phenomenon not observed in other orientations. Notably, the unstable FAI-rich (100) surface becomes water-resistant when exposed to water vapor rather than liquid water, highlighting the collective behavior of water molecules in the degradation process. Our findings provide critical mechanistic insights into facet-dependent degradation pathways in FAPbI3 and offer promising strategies for enhancing perovskite stability through facet engineering.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemistry of materials, 22 July 2025, v. 37, no. 14, p. 5099-5108en_US
dcterms.isPartOfChemistry of materialsen_US
dcterms.issued2025-07-22-
dc.identifier.scopus2-s2.0-105009465174-
dc.identifier.eissn1520-5002en_US
dc.description.validate202510 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000189/2025-07-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextJ.Y. acknowledges the financial support from the National Natural Science Foundation of China (62422512), the Hong Kong Polytechnic University (P0049027, P0053027, and P0053682), and the Research Grants Council of the Hong Kong Special Administrative (SAR) Region, China (Project No. PolyU 25300823 and PolyU 15300724), and Q.L. acknowledges the financial support from the Science and Technology Development Fund of the Macau SAR, China (No. 0056/2024/RIB1).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-06-26en_US
dc.description.oaCategoryGreen (AAM)en_US
dc.relation.rdatahttps://github.com/PolyUyinj/FAPbI-wateren_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-06-26
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.