Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115472
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorMainland Development Officeen_US
dc.creatorLi, Gen_US
dc.creatorXu, Yen_US
dc.creatorGui, Zen_US
dc.creatorGuo, Xen_US
dc.creatorTang, Len_US
dc.date.accessioned2025-09-29T09:21:10Z-
dc.date.available2025-09-29T09:21:10Z-
dc.identifier.issn1365-8816en_US
dc.identifier.urihttp://hdl.handle.net/10397/115472-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectGeoAIen_US
dc.subjectHuman mobilityen_US
dc.subjectMobility heterogeneityen_US
dc.subjectSequence predictionen_US
dc.subjectSpatial preferenceen_US
dc.titleStriking a balance between diversity and regularity : a preference-guided transformer for individual mobility predictionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1080/13658816.2025.2534159en_US
dcterms.abstractHuman mobility modeling and prediction are central research topics in GIScience. Although deep learning has led to significant advances in these fields, existing trajectory prediction models still face challenges in capturing the complexity of individual mobility behavior. Regression-based models often overestimate the diversity of human mobility, whereas classification models tend to underestimate it. This study attributes these biases to the models’ limitations in recognizing the spatial relationships among activity locations and mobility heterogeneity across individuals. To address these challenges, we propose the Spatial Preference Map-based Transformer (SPM-Former), explicitly integrating spatial proximity and mobility heterogeneity to enhance trajectory sequence prediction. To capture individual mobility characteristics, SPM-Former utilizes the Spatial Preference Map (SPM) to represent individuals’ spatial visitation preferences and adjacency relationships between locations. Then, we introduce two encoding modules to decode the information hidden within the SPM: one for encoding trajectory-level spatial-temporal information and another for embedding individual-level overall mobility features. Furthermore, we propose a novel optimization method, SPM-Loss, to assess prediction accuracy from the global spatial distribution perspective. Experimental results on a large-scale dataset from Japan demonstrate that SPM-Former outperforms state-of-the-art classification-based models, achieving approximately 3% and 20% improvements in trajectory sequence similarity and overall spatial feature similarity, respectively.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of geographical information science, Published online: 28 Jul 2025, Latest Articles, https://doi.org/10.1080/13658816.2025.2534159en_US
dcterms.isPartOfInternational journal of geographical information scienceen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105011969135-
dc.identifier.eissn1362-3087en_US
dc.description.validate202509 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000124/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by the National Natural Science Foundation of China (Grant No.42171454) and Hong Kong Polytechnic University Research Grant (Grant No. 4-ZZNC).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo2026-07-28en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-07-28
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.