Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115428
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.contributorResearch Centre for Digital Transformation of Tourismen_US
dc.creatorYang, Ten_US
dc.creatorHsu, CHCen_US
dc.date.accessioned2025-09-25T05:44:48Z-
dc.date.available2025-09-25T05:44:48Z-
dc.identifier.issn0261-5177en_US
dc.identifier.urihttp://hdl.handle.net/10397/115428-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectAspect-level sentiment analysisen_US
dc.subjectDomain knowledgeen_US
dc.subjectPre-trained language modelen_US
dc.subjectSchema theoryen_US
dc.subjectSentiment ambivalenceen_US
dc.subjectTK-BERTen_US
dc.titleCalculating tourist sentiment ambivalence through aspect-level sentiment analysis : Infusing tourism domain knowledge into a pre-trained language modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume113en_US
dc.identifier.doi10.1016/j.tourman.2025.105294en_US
dcterms.abstractEffectively capturing sentiment ambivalence—where individuals simultaneously experience both positive and negative sentiments—enables a more nuanced understanding of tourist sentiments for both academic and industry. Prior studies have measured ambivalence using self-reported overall sentiments data, which may suffer from bias and ambiguity. Building on schema theory, we proposed assessing tourists' sentiment ambivalence based on their aspect-level sentiment toward tourism objects. Tourism domain knowledge was incorporated into the Bidirectional Encoder Representations from Transformers (BERT) model to develop the TK-BERT. Online reviews of a Hong Kong attraction from multiple online platforms were used as a case study. TK-BERT demonstrated higher accuracy compared to the original BERT and other state-of-the-art models. This study advanced the understanding of sentiment ambivalence by operationalizing the concept and identifying the roles of different aspects in its formation. Methodologically, this paper provided a valuable tool for ambivalence calculation and aspect-level sentiment categorization.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationTourism management, Apr. 2026, v. 113, 105294en_US
dcterms.isPartOfTourism managementen_US
dcterms.issued2026-04-
dc.identifier.eissn1879-3193en_US
dc.identifier.artn105294en_US
dc.description.validate202509 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera4093b-
dc.identifier.SubFormID52079-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2029-04-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2029-04-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.