Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115425
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorGeng, Men_US
dc.creatorSu, Yen_US
dc.creatorLiu, Cen_US
dc.creatorChen, Len_US
dc.creatorHuang, Xen_US
dc.date.accessioned2025-09-25T02:44:00Z-
dc.date.available2025-09-25T02:44:00Z-
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10397/115425-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectExplainable artificial intelligenceen_US
dc.subjectLi-ion batteriesen_US
dc.subjectLong short-term memoryen_US
dc.subjectSparrow search algorithmen_US
dc.subjectState of healthen_US
dc.subjectUncertainty quantificationen_US
dc.titleInterpretable deep learning with uncertainty quantification for lithium-ion battery SOH estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume335en_US
dc.identifier.doi10.1016/j.energy.2025.138027en_US
dcterms.abstractThe rapid proliferation of lithium-ion batteries in electric vehicles and grid-scale energy storage systems has underscored the critical need for advanced battery management systems, particularly for accurate state of health (SOH) monitoring for massive cells. This paper has proposed an interpretable deep learning framework for SOH prediction, in which a long short-term memory (LSTM) network optimized by the sparrow search algorithm (SSA) serves as the core predictor. To enhance the transparency and reliability of the model, Deep SHAP (SHapley Additive explanations) is employed to interpret the contribution of each health feature, and uncertainty is quantified through confidence intervals derived from stochastic seed variation. To validate the proposed model, experiments were conducted on 12 batteries from the NASA and CALCE public datasets, as well as a proprietary dataset at PolyU. The experimental results show that the proposed model significantly outperforms others, with RMSE, MAE, and MAPE all below 5%. This work supports the practical application of interpretable SOH estimation in battery management systems to improve the safety and reliability of energy storage system operations.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy, 30 Oct. 2025, v. 335, 138027en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2025-10-30-
dc.identifier.scopus2-s2.0-105013369643-
dc.identifier.eissn1873-6785en_US
dc.identifier.artn138027en_US
dc.description.validate202510 bcelen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000139/2025-09-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is supported by Guangdong S&T program ( 2023B0909060004 ). YS thanks the scholarship from the Otto Poon Charitable Foundation Research Institute for Smart Energy (No. P0056107 ).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.