Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115418
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLi, A-
dc.creatorXu, Z-
dc.creatorLo, SW-
dc.creatorZhang, X-
dc.creatorJiang, H-
dc.creatorWu, M-
dc.date.accessioned2025-09-25T01:41:42Z-
dc.date.available2025-09-25T01:41:42Z-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10397/115418-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subject3-(amidinothio)-1-propanesulfonic aciden_US
dc.subjectBio-inspired electrolyteen_US
dc.subjectIontransport regulationen_US
dc.subjectOriented electrodepositionen_US
dc.subjectRechargeable aqueouszinc batteriesen_US
dc.titleKinesin-mimetic ion director enables highly oriented Zn deposition in aqueous batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/adfm.202518964-
dcterms.abstractThe practical implementation of zinc (Zn) metal electrode in rechargeable aqueous batteries remains hindered by uncontrolled dendrite formation and parasitic side reactions, primarily stemming from unregulated ion transport and high water activity. Inspired by directional cargo-transport function of kinesins, here a mimetic ion director, represented by 3-(amidinothio)-1-propanesulfonic acid (APSA), is deployed to regulate Zn deposition and suppress side reactions. When added into the electrolyte, the iso-thiourea groups of APSA selectively anchor to Zn(002) facets, mimicking microtubule-binding domain of kinesin, while the sulfonic acid groups locally concentrate Zn2+ ions near the anchored sites, resembling cargo-binding domains. This bio-inspired “anchor-capture” synergy enables dynamic, self-adaptive regulation of Zn2+ ion flux, thereby guiding oriented Zn deposition and suppressing dendrite formation. Meanwhile, APSA reduces both interfacial and bulk water activity, thus mitigating side reactions. As a result, the novel bio-inspired electrolyte dramatically extends the cycle life of aqueous Zn batteries. Remarkably, a Zn//NaV3O8·1.5H2O full battery comprising of an ultrathin Zn anode (20 µm) and a low N/P ratio (≈6) retains 93.40% of capacity after 400 cycles (over 600 h). This work provides a novel biomimetic ion transport regulation strategy that enables directional metal deposition, offering a transformative pathway toward highly stable and reversible metal batteries.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced functional materials, First published: 20 September 2025, Early View, e18964, https://doi.org/10.1002/adfm.202518964-
dcterms.isPartOfAdvanced functional materials-
dcterms.issued2025-
dc.identifier.eissn1616-3028-
dc.identifier.artne18964-
dc.description.validate202509 bcch-
dc.identifier.FolderNumbera4089en_US
dc.identifier.SubFormID52073en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.