Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115333
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorHui, Xen_US
dc.creatorZhan, Zen_US
dc.creatorZhang, Zen_US
dc.creatorYu,Jen_US
dc.creatorJiang, Pen_US
dc.creatorDang, Zen_US
dc.creatorWang, Jen_US
dc.creatorCai, Sen_US
dc.creatorWang, Yen_US
dc.creatorXu, ZLen_US
dc.date.accessioned2025-09-22T02:42:17Z-
dc.date.available2025-09-22T02:42:17Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/115333-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2024 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.4c07907.en_US
dc.subjectCompetitive coordinationen_US
dc.subjectDefected MOFen_US
dc.subjectSingle-ion conductingen_US
dc.subjectSolid-state electrolyteen_US
dc.subjectZn-ion batteryen_US
dc.titleMissing-linker defect functionalized metal-organic frameworks accelerating zinc ion conduction for ultrastable all-solid-state zinc metal batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage25237en_US
dc.identifier.epage25248en_US
dc.identifier.volume18en_US
dc.identifier.issue36en_US
dc.identifier.doi10.1021/acsnano.4c07907en_US
dcterms.abstractSolid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn2+ transference number (tZn2+), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn2+ conduction and seamless electrolyte-electrode contact. The single-Zn2+ conduction is facilitated by the anchoring of the OTF– anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn2+ ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm–1 and a high tZn2+ of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (>99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO2 full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn2+ ion conduction, assisting the future design of all-solid-state ZMBs.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 10 Sept 2024, v. 18, no. 36, p. 25237-25248en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2024-09-10-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202509 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera4055-
dc.identifier.SubFormID52023-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe work described in this paper was supported by funding supports from the Research Institute of Advanced Manufacturing (RIAM) and the State Key Laboratory of Ultraprecision Machining Technology (SKL-UPMT) of the Hong Kong Polytechnic University (project No. 1-CD4M, 1-BBR0) and the PolyU Distinguished Postdoctoral Fellowship Scheme (project No. 1-YWD8), Department of Science and Technology of Guangdong Province (Project No. 2022A1515010206). S.C. acknowledges the support of the startup grant from the Department of Applied Physics, the Hong Kong Polytechnic University (1-BDCM), and the Hong Kong Research Grants Council General Research Fund (No. 15306122).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hui_Missing_Linker_Defect.pdf4.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.