Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115321
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorJongebloed, UAen_US
dc.creatorChalif, JIen_US
dc.creatorTashmim, Len_US
dc.creatorPorter, Wen_US
dc.creatorBates, K, Hen_US
dc.creatorChen, Qen_US
dc.creatorOsterberg, ECen_US
dc.creatorKoffman, BGen_US
dc.creatorCole-Dai, Jen_US
dc.creatorWinski, D, Aen_US
dc.creatorFerris, DGen_US
dc.creatorKreutz, KJen_US
dc.creatorWake, CPen_US
dc.creatorAlexander, Ben_US
dc.date.accessioned2025-09-19T03:24:05Z-
dc.date.available2025-09-19T03:24:05Z-
dc.identifier.issn1680-7316en_US
dc.identifier.urihttp://hdl.handle.net/10397/115321-
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.rights©Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Jongebloed, U. A., Chalif, J. I., Tashmim, L., Porter, W. C., Bates, K. H., Chen, Q., Osterberg, E. C., Koffman, B. G., Cole-Dai, J., Winski, D. A., Ferris, D. G., Kreutz, K. J., Wake, C. P., and Alexander, B.: Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations, Atmos. Chem. Phys., 25, 4083–4106 is available at https://doi.org/10.5194/acp-25-4083-2025.en_US
dc.titleDimethyl sulfide chemistry over the industrial era : comparison of key oxidation mechanisms and long-term observationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4083en_US
dc.identifier.epage4106en_US
dc.identifier.volume25en_US
dc.identifier.issue7en_US
dc.identifier.doi10.5194/acp-25-4083-2025en_US
dcterms.abstractDimethyl sulfide (DMS) is primarily emitted by marine phytoplankton and oxidized in the atmosphere to form methanesulfonic acid (MSA) and sulfate aerosols. Ice cores in regions affected by anthropogenic pollution show an industrial-era decline in MSA, which has previously been interpreted as indicating a decline in phytoplankton abundance. However, a simultaneous increase in DMS-derived sulfate (bioSO<inf>4</inf>) in a Greenland ice core suggests that pollution-driven oxidant changes caused the decline in MSA by influencing the relative production of MSA versus bioSO<inf>4</inf>. Here we use GEOS-Chem, a global chemical transport model, and a zero-dimensional box model over three time periods (preindustrial era, peak North Atlantic NO<inf>x</inf> pollution, and 21st century) to investigate the chemical drivers of industrial-era changes in MSA and bioSO<inf>4</inf>, and we examine whether four DMS oxidation mechanisms reproduce trends and seasonality in observations. We find that box model and GEOS-Chem simulations can only partially reproduce ice core trends in MSA and bioSO<inf>4</inf> and that wide variation in model results reflects sensitivity to DMS oxidation mechanism and oxidant concentrations. Our simulations support the hypothesized increase in DMS oxidation by the nitrate radical over the industrial era, which increases bioSO<inf>4</inf> production, but competing factors such as oxidation by BrO result in increased MSA production in some simulations, which is inconsistent with observations. To improve understanding of DMS oxidation, future work should investigate aqueous-phase chemistry, which produces 82 %-99 % of MSA and bioSO<inf>4</inf> in our simulations, and constrain atmospheric oxidant concentrations, including the nitrate radical, hydroxyl radical, and reactive halogens.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAtmospheric chemistry and physics, 2025, v. 25, no. 7, p. 4083-4106en_US
dcterms.isPartOfAtmospheric chemistry and physicsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105002377819-
dc.identifier.eissn1680-7324en_US
dc.description.validate202509 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2024-2025-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextFunding text 1: This research has been supported by the Office of Polar Programs (grant nos. 1904148, 2230350, and 2002470); the Division of Atmospheric and Geospace Sciences (grant nos. 2202287, 1204035, 0713974, 1203838, 1502783, 1806422, 2002483, and 1203863); and the University Research Committee, University of Hong Kong (grant nos. 15223221 and 15219722).; Funding text 2: This research has been supported by the Office of Polar Programs (grant nos. 1904148, 2230350, and 2002470); the Division of Atmospheric and Geospace Sciences (grant nos. 2202287, 1204035, 0713974, 1203838, 1502783, 1806422, 2002483, and 1203863); and the University Research Committee, University of Hong Kong (grant nos. 15223221 and 15219722). Ursula A. Jongebloed and Becky Alexander acknowledge awards PLR 1904148, PLR 2230350, and AGS 2202287. Qianjie Chen acknowledges the Hong Kong Research Grants Council (grant nos. 15223221 and 15219722). Dominic A. Winski acknowledges awards AGS 1204035 and OPP 2002470. Karl J. Kreutz acknowledges AGS 0713974, 1203838, 1502783, 1806422, and 2002483. Erich C. Osterberg and Jacob I. Chalif acknowledge AGS 1204035, and Cameron P. Wake acknowledges AGS 1203863.; Funding text 3: Ursula A. Jongebloed and Becky Alexander acknowledge awards PLR 1904148, PLR 2230350, and AGS 2202287. Qianjie Chen acknowledges the Hong Kong Research Grants Council (grant nos. 15223221 and 15219722). Dominic A. Winski acknowledges awards AGS 1204035 and OPP 2002470. Karl J. Kreutz acknowledges AGS 0713974, 1203838, 1502783, 1806422, and 2002483. Erich C. Osterberg and Jacob I. Chalif acknowledge AGS 1204035, and Cameron P. Wake acknowledges AGS 1203863.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
acp-25-4083-2025.pdf5.32 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.