Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115244
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.creatorChen, Fen_US
dc.creatorYu, Jen_US
dc.creatorLi, Ren_US
dc.creatorShi, Fen_US
dc.creatorChe, Xen_US
dc.creatorChan, KCen_US
dc.creatorSun, Yen_US
dc.creatorXue, Wen_US
dc.creatorXu, Zen_US
dc.date.accessioned2025-09-17T03:46:33Z-
dc.date.available2025-09-17T03:46:33Z-
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://hdl.handle.net/10397/115244-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectChloride-free electrolyteen_US
dc.subjectDeep eutectic solventen_US
dc.subjectMagnesium rechargeable batteriesen_US
dc.subjectSolid-state electrolyteen_US
dc.titleDirect crystallization of deep eutectic solvent into solid-state electrolyte for magnesium metal batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume611en_US
dc.identifier.doi10.1016/j.jpowsour.2024.234780en_US
dcterms.abstractSolid-state magnesium rechargeable battery is a promising post-Li battery technology due to the high abundance of Mg element, the competitive volumetric capacity and enhanced safety of Mg metal anodes. However, current solid electrolyte formulas failed to realize considerably reversible Mg anodes caused by the passive layer formed on their surface. Herein, a novel Mg2+-conducting solid-state electrolyte (MCE) is proposed by directly crystalizing deep eutectic solvents composing of Mg(TFSI)2 and urea at room temperature. Experimental and simulation results indicate the formation of anion-rich groups in urea-Mg2+ coordination structures, facilitating rapid Mg2+ migration in the MCE. When applied in the Mg//Mg symmetric cells, the new electrolyte derives a macroporous and fluoride-rich organic/inorganic hybrid interface layer on the Mg metal surface. The unique interfacial structure endows the interface layer with Mg2+ diffusion capability for reversible Mg metal stripping/plating. The practical feasibility of MCE is finally demonstrated by cycling in Mg//V2O5 full cells with competitive electrochemical performance. This work illustrates a new concept of crystalizing deep eutectic solvents into solid-state electrolytes at room temperature for multivalent metal batteries.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of power sources, 15 Aug. 2024, v. 611, 234780en_US
dcterms.isPartOfJournal of power sourcesen_US
dcterms.issued2024-08-15-
dc.identifier.scopus2-s2.0-85194403294-
dc.identifier.eissn1873-2755en_US
dc.identifier.artn234780en_US
dc.description.validate202509 bcch-
dc.identifier.FolderNumbera4026-
dc.identifier.SubFormID51957-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work described in this paper was fully supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU25216121, PolyU15305022), Shenzhen Municipal Science and Technology Innovation Commission (Project No.JCYJ20220531091003008), Department of Science and Technology of Guangdong Province (Project No. 2022A1515010206) and the Research Committee of the Hong Kong Polytechnic University under project codes 1-CD4M and 1-BBR0.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.