Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115083
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLi, Zen_US
dc.creatorTao, Wen_US
dc.creatorWang, Yen_US
dc.creatorYe, Xen_US
dc.creatorChen, Yen_US
dc.creatorHan, Ben_US
dc.creatorLee, LYSen_US
dc.date.accessioned2025-09-09T07:40:41Z-
dc.date.available2025-09-09T07:40:41Z-
dc.identifier.issn0002-7863en_US
dc.identifier.urihttp://hdl.handle.net/10397/115083-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2025 The Authors. Published by American Chemical Societyen_US
dc.rightsThis is article is licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Li, Z., Tao, W., Wang, Y., Ye, X., Chen, Y., Han, B., & Lee, L. Y. S. (2025). Corrosion-Resistant MoO3/Fe2O3/MoS2 Heterojunctions Stabilize OH–Adsorption for Efficient Light-Assisted Seawater Electrooxidation. Journal of the American Chemical Society, 147(28), 24461-24472 is available at https://doi.org/10.1021/jacs.5c04085.en_US
dc.titleCorrosion-resistant MoO₃/Fe₂O₃/MoS₂ heterojunctions stabilize OH‾ adsorption for efficient light-assisted seawater electrooxidationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage24461en_US
dc.identifier.epage24472en_US
dc.identifier.volume147en_US
dc.identifier.issue28en_US
dc.identifier.doi10.1021/jacs.5c04085en_US
dcterms.abstractDirect seawater electrolysis holds promise for sustainable hydrogen production, yet challenges such as severe chlorine corrosion on the anode and high energy barriers for oxygen evolution reaction (OER) limit its operational time and efficiency. Herein, we present MoO3/Fe2O3/MoS2 heterojunctions to mitigate chlorine-induced corrosion and achieve effective photoelectric synergy. The in situ leached MoO42– and SO42– inhibitors reduce Cl– adsorption, thereby ensuring high OER selectivity, while the MoO3/Fe2O3/MoS2 balances the repelling effects of these inhibitors, facilitating OH– adsorption and widening the overpotential gap between water oxidation and chlorine oxidation. The MoO3/Fe2O3/MoS2 catalyst outperforms its Fe2O3 counterpart in terms of lifespan, maintaining stability at 100 and 300 mA cm–2 for 100 and 500 h, respectively. Additionally, built-in electric fields formed at the interfaces lower interfacial resistance and extend the lifetime of photogenerated carriers by 1.47-fold, allowing for a 20.4% increase in seawater OER current density under light irradiation. Our findings offer a viable strategy for designing high-performance electrocatalysts for light-assisted seawater electrolysis.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of the American Chemical Society, 16 July 2025, v. 147, no. 28, p. 24461-24472en_US
dcterms.isPartOfJournal of the American Chemical Societyen_US
dcterms.issued2025-07-16-
dc.identifier.scopus2-s2.0-105007502010-
dc.identifier.eissn1520-5126en_US
dc.description.validate202509 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, OA_TA-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors gratefully acknowledge the State Key Laboratory of Chemical Biology and Drug Discovery Center for PL measurements, the financial support from the Hong Kong Polytechnic University (Q-CDAG), and the National Research Foundation of Korea (NRF-2022H1D3A2A01096400) of the Korean Government (MSIT). Z.L. acknowledges the award of the PolyU Presidential PhD Fellowship Scheme.en_US
dc.description.pubStatusPublisheden_US
dc.description.TAACS (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Corrosion_Resistant_Heterojunctions.pdf8.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.