Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/115075
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorSun, X-
dc.creatorZhou, Z-
dc.creatorHe, W-
dc.creatorBi, Y-
dc.creatorWang, Y-
dc.creatorLiu, H-
dc.creatorZhong, R-
dc.creatorMa, H-
dc.date.accessioned2025-09-09T07:40:35Z-
dc.date.available2025-09-09T07:40:35Z-
dc.identifier.urihttp://hdl.handle.net/10397/115075-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Sun, X., Zhou, Z., He, W., Bi, Y., Wang, Y., Liu, H., Zhong, R., & Ma, H. (2025). Characterization of the effects of waste mullite powder on seawater sea sand cementitious materials. Case Studies in Construction Materials, 22, e04723 is available at https://doi.org/10.1016/j.cscm.2025.e04723.en_US
dc.subjectDurabilityen_US
dc.subjectRapid Iodide migrationen_US
dc.subjectSeawater sea sand concreteen_US
dc.subjectWaste mullite powderen_US
dc.titleCharacterization of the effects of waste mullite powder on seawater sea sand cementitious materialsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume22-
dc.identifier.doi10.1016/j.cscm.2025.e04723-
dcterms.abstractMaintaining the durability of coastal concrete structures while reducing construction costs remains a formidable challenge. Drawing inspiration from the volcanic concrete used by ancient Greeks and Romans, this study explores the feasibility of using waste mullite powder (WMP) with a high alumina content in seawater sea sand concrete to conserve natural resources and enhance durability. The experimental results demonstrate that the incorporation of seawater and WMP exerts detrimental impacts on the flow characteristics and workability of cementitious composites. While the sulfate content in seawater and sea sand can bolster the early strength of sea sand seawater concrete, sulfate attack compromises its long-term strength. Incorporating a small amount of WMP (3 %, 5 %) proved beneficial for compressive strength. To assess the chloride penetration resistance of SSC, the Rapid Iodide Migration test indicated that the alumina in WMP can adsorb and immobilize chloride ions. Microstructure characterizations show that the incorporation of WMP resulting in an increased content of calcium silicate hydrate gel and Friedel's salt in the hydration products. The observed modification substantially augments both the physicochemical binding mechanisms within the cementitious matrix, facilitating improved chloride ion immobilization through synergistic physical entrapment and chemical fixation processes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCase studies in construction materials, July 2025, v. 22, e04723-
dcterms.isPartOfCase studies in construction materials-
dcterms.issued2025-07-
dc.identifier.scopus2-s2.0-105004261439-
dc.identifier.eissn2214-5095-
dc.identifier.artne04723-
dc.description.validate202509 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe financial support from the National Natural Science Foundation of China [Grant number 52279131 and 51909072].en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2214509525005212-main.pdf21.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.