Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114830
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorYuan, S-
dc.creatorCheung, CF-
dc.creatorShokrani, A-
dc.creatorZhan, Z-
dc.creatorWang, C-
dc.date.accessioned2025-09-01T01:52:41Z-
dc.date.available2025-09-01T01:52:41Z-
dc.identifier.issn0007-8506-
dc.identifier.urihttp://hdl.handle.net/10397/114830-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2025 The Authors. Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Yuan, S., Cheung, C. F., Shokrani, A., Zhan, Z., & Wang, C. (2025). Atomic-level flat polishing of polycrystalline diamond by combining plasma modification and chemical mechanical polishing. CIRP Annals, 74(1), 441–445 is available at https://doi.org/10.1016/j.cirp.2025.03.024.en_US
dc.subjectDiamonden_US
dc.subjectPlasmaen_US
dc.subjectPolishingen_US
dc.titleAtomic-level flat polishing of polycrystalline diamond by combining plasma modification and chemical mechanical polishingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage441-
dc.identifier.epage445-
dc.identifier.volume74-
dc.identifier.issue1-
dc.identifier.doi10.1016/j.cirp.2025.03.024-
dcterms.abstractThis paper presents an atomic-level flat polishing method based on hydroxyl (•OH) oxidation combining plasma modification and chemical mechanical polishing (CMP) of polycrystalline diamond (PCD). The PCD surface was firstly modified using •OH generated by He-based H2O2 plasma leading to the formation of an approximately 30 nm thick uniform oxidation layer on the PCD surface composed of carbon-oxygen mixed layer and oxygen-rich layer. Reactive force field molecular dynamics (ReaxFF MD) simulations explained the plasma modification mechanism. The modified layer was then removed using CMP resulting in an atomic-level flat surface with arithmetical mean height (Sa) of 0.366 nm.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCIRP annals : manufactering technology, 2025, v. 74, no. 1, p. 441-445-
dcterms.isPartOfCIRP annals : manufactering technology-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105003232885-
dc.identifier.eissn1726-0604-
dc.description.validate202509 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors would like to express thanks to the National Key R&D Program of China (No. 2023YFE0203800), Innovation and Technology Commission (ITC) of the Government of the HKSAR, China (MHP/151/ 22), Guangdong Basic and Applied Basic Research Foundation (2025A1515011366), and Postdoc Matching Fund Scheme of The Hong Kong Polytechnic University (1-W29X). The authors acknowledge the Beijing Super Cloud Computing Center (BSCC) for providing HPC resources that have contributed to the research results reported within this paper. The authors also thank Prof. Hui Deng from Southern University of Science and Technology for his strong support to this paper.en_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0007850625000241-main.pdf2.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.