Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114809
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorDu, Sen_US
dc.creatorDu, Men_US
dc.creatorGao, Yen_US
dc.creatorYang, Men_US
dc.creatorHu, Fen_US
dc.creatorWeng, Yen_US
dc.date.accessioned2025-08-28T01:37:09Z-
dc.date.available2025-08-28T01:37:09Z-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://hdl.handle.net/10397/114809-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAutonomous motion planningen_US
dc.subjectDynamic construction environmenten_US
dc.subjectHuman-robot collaborationen_US
dc.subjectLow-feature 2D mappingen_US
dc.subjectMulti-constraint optimizationen_US
dc.titleOptimized motion planning for mobile robots in dynamic construction environments with low-feature mapping and pose-based positioningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume177en_US
dc.identifier.doi10.1016/j.autcon.2025.106334en_US
dcterms.abstractOptimizing autonomous motion planning for robots in dynamic and uncertain construction environments is crucial. Real-time planning is challenged by the complexity of map-building data processing and path optimization. This paper introduced a dynamic motion planning approach utilizing low-feature data, multi-constraint path planning, and flexible positioning. A multi-sensor data fusion method generates grid-based 2D dynamic maps for efficient data processing and real-time perception. The approach incorporates multiple constraints, including safety, stability, and energy consumption, to optimize path planning. Flexible destination positioning is achieved through pose recognition in changing construction scenarios. Real-time experiments demonstrate that the proposed method reduces CPU usage by 19 %, memory usage by 8 %, and energy consumption by 9.5 % compared to traditional methods using LIO-SAM mapping and RRT path planning. This paper provided an efficient and safe motion planning approach for mobile robots in dynamic environments, achieving low energy consumption and enhanced operational efficiency.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAutomation in construction, Sept. 2025, v. 177, 106334en_US
dcterms.isPartOfAutomation in constructionen_US
dcterms.issued2025-09-
dc.identifier.scopus2-s2.0-105007762943-
dc.identifier.eissn1872-7891en_US
dc.identifier.artn106334en_US
dc.description.validate202508 bchy-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000106/2025-07-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe author would like to gratefully acknowledge The Hong Kong Polytechnic University (P0051072).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.