Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114787
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorNguyen, QH-
dc.creatorSidra, S-
dc.creatorOh, S-
dc.creatorIm, K-
dc.creatorDao, HT-
dc.creatorKim, DH-
dc.creatorLee, LYS-
dc.creatorKim, J-
dc.date.accessioned2025-08-26T02:52:14Z-
dc.date.available2025-08-26T02:52:14Z-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10397/114787-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectBifunctional catalysten_US
dc.subjectFe–N–Cen_US
dc.subjectHeterostructured catalystsen_US
dc.subjectHierarchical pore structureen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectOxygen reduction reactionen_US
dc.subjectZinc–air batteryen_US
dc.titleSynergistic coupling of Mo₂N and Fe single atoms in hollow carbon enables robust bifunctional catalysis in zinc–air battery applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume518-
dc.identifier.doi10.1016/j.cej.2025.164872-
dcterms.abstractSingle-atom (SA) catalysts based on Fe-group elements are highly effective for the oxygen reduction reaction (ORR) in rechargeable zinc–air batteries (ZABs), yet their oxygen evolution reaction (OER) performance remains a critical bottleneck for practical applications. Here, we report a bifunctional electrocatalyst comprising ultrafine Mo2N nanoparticles encapsulated within Fe SA-anchored N-doped hollow carbon heterostructures (Mo2N@Fe–N–HC). The synergistic interaction between Mo2N and densely distributed Fe SAs, combined with a hierarchical porous architecture, enhances reaction kinetics, optimizes ORR/OER intermediate adsorption energies, and improves mass transport. Mo2N@Fe–N–HC outperforms commercial Pt/C and RuO2 benchmarks, exhibiting exceptional bifunctional activity. ZABs incorporating Mo2N@Fe–N–HC demonstrate high discharge power density and remarkable durability, with aqueous ZAB operating stably for over 650 h and solid-state ZAB for 130 h at −15 °C. This work offers a robust strategy for designing advanced electrocatalysts, advancing the efficiency and longevity of ZABs for practical energy storage solutions.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering journal, 15 Aug. 2025, v. 518, 164872-
dcterms.isPartOfChemical engineering journal-
dcterms.issued2025-08-15-
dc.identifier.scopus2-s2.0-105008143613-
dc.identifier.eissn1873-3212-
dc.identifier.artn164872-
dc.description.validate202508 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000025/2025-07en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; RS-2024-00345635, RS-2024-00466627, RS-2019-NR040066).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-08-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-08-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.