Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114771
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorTao, Sen_US
dc.creatorGuo, Ren_US
dc.creatorLee, Jen_US
dc.creatorMoura, Sen_US
dc.creatorCasals, LCen_US
dc.creatorJiang, Sen_US
dc.creatorShi, Jen_US
dc.creatorHarris, Sen_US
dc.creatorZhang, Ten_US
dc.creatorChung, CYen_US
dc.creatorZhou, Gen_US
dc.creatorTian, Jen_US
dc.creatorZhang, Xen_US
dc.date.accessioned2025-08-25T06:41:50Z-
dc.date.available2025-08-25T06:41:50Z-
dc.identifier.issn1754-5692en_US
dc.identifier.urihttp://hdl.handle.net/10397/114771-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.titleImmediate remaining capacity estimation of heterogeneous second-life lithium-ion batteries via deep generative transfer learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage7413en_US
dc.identifier.epage7426en_US
dc.identifier.volume18en_US
dc.identifier.issue15en_US
dc.identifier.doi10.1039/d5ee02217gen_US
dcterms.abstractThe reuse of second-life lithium-ion batteries (LIBs) retired from electric vehicles is critical for energy storage in underdeveloped regions, where power infrastructures are weak or absent. However, estimating the relative remaining capacity (RRC) of second-life batteries using field-accessible data stream remains challenging due to its scarcity and heterogeneity, despite efforts in battery passports and other initiatives to secure data integrity. This study proposes a deep generative transfer learning framework to address these two-fold challenges by generating voltage dynamics across state-of-charge (SOC) and using deep correlation alignment (CORAL) to align heterogeneities resulting from different aging patterns (domains) of second-life LIBs. We generate voltage response dynamics data across various SOC conditions from 20 160 samples under 10 SOC values, demonstrating high statistical similarities and confidence. The model estimates the RRC with minimal field data availability, specifically 2% of the full sample size, achieving a mean absolute percentage error of 7.2% and 3.6% for second-life batteries with different degradation behaviors, respectively. The model preserves established knowledge in the available domain while reducing RRC estimation risks in new domains where data availability is limited. The maximum RRC estimation risk is reduced by 49% at a 95% confidence level. This unified data generation and transfer learning paradigm outperforms the state-of-the-art machine learning and equivalent circuit model-method across all data availability conditions. The “generate and transfer” paradigm enlightens many potential applications in other predictive management tasks by preferentially generalizing in-distribution data and then adapting to out-of-distribution conditions under guidance of limited field data.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy and environmental science, 7 Aug. 2025, v. 18, no. 15, p. 7413-7426en_US
dcterms.isPartOfEnergy and environmental scienceen_US
dcterms.issued2025-08-07-
dc.identifier.scopus2-s2.0-105009471919-
dc.identifier.eissn1754-5706en_US
dc.description.validate202508 bcwcen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000099/2025-07-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe first author acknowledges Professor Scott J. Moura for the useful discussion and algorithm design of equivalent circuit model parameter identification. This research work was supported by Key Scientific Research Support Project of Shanxi Energy Internet Research Institute (Grant No. SXEI2023A002) [X. Z.], Meituan Scholar Program-International Collaboration Project (Grant No. 202209A) [X. Z.], Tsinghua Shenzhen International Graduate School Interdisciplinary Innovative Fund (Grant No. JC2021006) [X. Z. and G. Z.], Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation (Grant No. SZPR2023007) [G. Z.], Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023B1515120099) [G. Z.].en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-08-07en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-08-07
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.