Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114754
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZhang, Jen_US
dc.creatorFan, Ken_US
dc.creatorYin, Sen_US
dc.creatorLi, Hen_US
dc.creatorLi, Hen_US
dc.creatorCao, Jen_US
dc.creatorWu, Yen_US
dc.creatorCheng, Qen_US
dc.creatorLiu, Ten_US
dc.creatorZhou, Len_US
dc.creatorHuang, Hen_US
dc.date.accessioned2025-08-25T03:33:30Z-
dc.date.available2025-08-25T03:33:30Z-
dc.identifier.issn1614-6832en_US
dc.identifier.urihttp://hdl.handle.net/10397/114754-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.subjectAnti-freezingen_US
dc.subjectComposite structural hybrid supercapacitorsen_US
dc.subjectMechanical and electrochemical propertiesen_US
dc.subjectMultifunctionalityen_US
dc.subjectStiffness and toughnessen_US
dc.titleUnconventional Hofmeister effect in stiff and tough electrolyte with strong spring-like hydrogen bonding for multifunctional composite structural hybrid supercapacitors working at -20 °Cen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1002/aenm.202502761en_US
dcterms.abstractApplying Zn-ion-based multifunctional composite structural hybrid supercapacitors (CSHSs) at subzero temperature introduces significant constraints, primarily containing polymer electrolyte crystallization and structural deterioration under mechanical loading. The structural polymer electrolyte requires high ion conductivity and mechanical robustness, wherein stiffness and toughness are essential for transferring mechanical load between interlayers and preventing crack propagation. In this work, an unconventional Hofmeister effect of chaotropic ClO4− anions is observed in anti-freezing ethylene glycol (EG)-polymer, leading to simultaneous enhancements in the stiffness and toughness of the polymer composite. The formation of strong and long spring-like hydrogen bonding among ClO4−, EG, and the polymer matrix makes the material stiff and tough. Benefiting from the superior freeze resistance and mechanical strength, the fabricated CSHS demonstrates exceptional electrochemical stability, maintaining 88.9% of its initial specific capacity (60 mAh g−1) through 5000 cycles at 0.3 A g−1 even under cyclic three-point bending test (at a strain of 0.6%) at subzero temperatures. Furthermore, this investigation enhances the understanding of CSHS operation under both mechanical impact and subzero conditions, establishing design principles for CSHS applications.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAdvanced energy materials, First published: 07 August 2025, Early View, https://doi.org/10.1002/aenm.202502761en_US
dcterms.isPartOfAdvanced energy materialsen_US
dcterms.issued2025-
dc.identifier.scopus2-s2.0-105012606339-
dc.identifier.eissn1614-6840en_US
dc.description.validate202508 bcwcen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000072/2025-08-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe authors thank the Hong Kong Polytechnic University and the Southern University of Science and Technology for their financial support. This work was funded by the Basic Research Special Projects (Shenzhen Natural Science Foundation, Number: JCYJ20220818100405012; 2021JC020054) and Shenzhen Key Laboratory of intelligent Manufacturing for Continuous Carbon Fiber Reinforced Composites (Grant No. ZDSYS20220527171404011), and the Hong Kong Polytechnic University (1\u2010CD8W, G\u2010SAC1, and 4\u2010CEBD), Science and Technology Program of Guangdong Province of China (2021B1515130010).en_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.