Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114752
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.contributorResearch Institute for Smart Energy-
dc.contributorMainland Development Office-
dc.creatorHu, W-
dc.creatorHu, K-
dc.creatorZeng, Q-
dc.creatorFang, Z-
dc.creatorWu, Z-
dc.creatorSu, J-
dc.creatorYe, X-
dc.creatorWang, L-
dc.creatorLee, LYS-
dc.date.accessioned2025-08-25T03:23:17Z-
dc.date.available2025-08-25T03:23:17Z-
dc.identifier.issn0304-3894-
dc.identifier.urihttp://hdl.handle.net/10397/114752-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectLithium-ion battery recyclingen_US
dc.subjectMethanolen_US
dc.subjectMicrowave-assisted leachingen_US
dc.subjectMixed cathode recyclingen_US
dc.subjectSulfosalicylic aciden_US
dc.titleMicrowave-assisted methanol–sulfosalicylic acid leaching system for efficient and closed-loop lithium-ion battery cathode recyclingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume496-
dc.identifier.doi10.1016/j.jhazmat.2025.139415-
dcterms.abstractEffective recycling of spent lithium-ion batteries (LIBs) is critical to mitigating resource scarcity and environmental degradation amid rising global demand for energy storage. However, LIB recycling faces two persistent challenges: non-recyclable reductants in organic acid systems and inefficiencies in processing mixed cathode powders. Herein, we introduce a closed-loop methanol–sulfosalicylic acid (MeOH–SSA) system for rapid, sustainable metal recovery. Leveraging microwave-assisted leaching, this approach achieves exceptional efficiencies (>99 % within 15 min) for extracting Li, Ni, Co, and Mn, governed by an internal diffusion-controlled mechanism with notably low activation energies (15.39, 17.57, and 17.55 kJ mol−1 for Ni, Co, and Mn, respectively). Our integrated recovery process, encompassing oxalate coprecipitation, MeOH regeneration, and Li3PO4 isolation, achieves complete recovery of Ni and Co, high recovery of Mn (97 %), and effective Li recovery (95.87 % with 94 % purity), alongside 92.53 % MeOH reuse. A techno-economic analysis highlights significant advantages: a net profit of $22.59 per kg of processed cathode material with an energy consumption of 28.09 MJ kg−1, outperforming conventional methods in cost-efficiency and environmental footprint. Notably, this system excels across both single-component and mixed cathode compositions. By simultaneously addressing reductant reusability and mixed-cathode compatibility, this work establishes a versatile, eco-efficient framework for LIB recycling.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of hazardous materials, 15 Sept 2025, v. 496, 139415-
dcterms.isPartOfJournal of hazardous materials-
dcterms.issued2025-09-15-
dc.identifier.scopus2-s2.0-105012631225-
dc.identifier.eissn1873-3336-
dc.identifier.artn139415-
dc.description.validate202508 bcch-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000076/2025-08en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work was supported by the National Natural Science Foundation of China ( 21902104 ), Shenzhen Fundamental Research Funds ( 20220717183323001 ), and Shenzhen Key Basic Research Project ( JCYJ20220818102210023 ).en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.