Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114748
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorLai, Cen_US
dc.creatorLu, Len_US
dc.creatorXu, Den_US
dc.date.accessioned2025-08-25T02:11:55Z-
dc.date.available2025-08-25T02:11:55Z-
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10397/114748-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEnergy efficiencyen_US
dc.subjectHygroscopic hydrogelen_US
dc.subjectPassive coolingen_US
dc.subjectPhotovoltaic coolingen_US
dc.subjectPower generationen_US
dc.titleDual-functional carbon fiber-hygroscopic hydrogel composites for mechanically robust and efficient photovoltaic coolingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume332en_US
dc.identifier.doi10.1016/j.energy.2025.136966en_US
dcterms.abstractHydrogel-based passive cooling has demonstrated significant potential for addressing the heat dissipation issue in solar photovoltaic (PV) modules to enhance their power generation. However, existing hydrogel designs face a critical limitation: optimizing thermal conductivity often sacrifices mechanical durability, while mechanical reinforcement strategies neglect heat transfer enhancement. To address this trade-off, a dual-functional hydrogel composite was developed to provide efficient evaporative cooling by synergistically integrating carbon fiber fabrics (CFFs) with hygroscopic polyacrylamide (PAM) hydrogel and CaCl2. This composite uniquely achieves a 622 % enhancement in mechanical strength alongside significantly improved thermal performance, delivering an average evaporative cooling power of 203 W m−2. Under controlled laboratory conditions, the composite exhibited an average temperature reduction of 19 °C, with indoor experiments further revealing a peak temperature drop of 17.3 °C and 14.2 % average power enhancement. Additionally, A heat and mass transfer model was established to elucidate water vapor desorption dynamics, providing mechanistic insights into humidity- and temperature-dependent performance. Furthermore, field tests under diverse environments validated the composite's adaptability, achieving a maximum temperature reduction of 13.5 °C and 5.83 % average power improvement. These results, supported by both experimental and theoretical robustness, highlight the composite's potential as a scalable and energy-efficient solution for real-world photovoltaic thermal management.en_US
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy, 30 Sept 2025, v. 332, 136966en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2025-09-30-
dc.identifier.eissn1873-6785en_US
dc.identifier.artn136966en_US
dc.description.validate202508 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3990-
dc.identifier.SubFormID51875-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-09-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-09-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.