Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114744
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorWu, Y-
dc.creatorYuen, ACY-
dc.creatorMo, C-
dc.creatorHuang, X-
dc.date.accessioned2025-08-25T01:09:17Z-
dc.date.available2025-08-25T01:09:17Z-
dc.identifier.issn0196-8904-
dc.identifier.urihttp://hdl.handle.net/10397/114744-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectBattery safetyen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectLithium-ion batteryen_US
dc.subjectThermal resistance networken_US
dc.subjectThermal runaway propagationen_US
dc.titleModelling and optimization of a thermal management and barrier integration structure by coupling CFD and reduced-order thermal resistance networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume343-
dc.identifier.doi10.1016/j.enconman.2025.120188-
dcterms.abstractThe thermal management performance and thermal runaway propagation (TRP) characteristics of lithium-ion battery systems are critical factors for assessing battery safety. This study proposes a novel thermal management and barrier integration structure (TMBIS), integrating phase-change materials (PCM) and flame-retardant (FR) insulation materials, to simultaneously achieve effective thermal management and mitigate TRP within lithium-ion battery modules. By coupling a reduced order lumped thermal resistance network (TRN) model with a computational fluid dynamics (CFD) model, a multi-scale simulation approach was employed to investigate the dynamics of TRP and elucidate the protective mechanism and optimize parameters of the proposed structure. The results indicated that, with PCM-to-FR thickness and thermal conductivity ratios of 0.8 and 0.5, respectively, the maximum temperature of the battery module was reduced from 324 K to 319 K and significantly extending TR propagation intervals (Δt12: 12.9 s → 81.7 s; Δt23: 12.4 s → 69.5 s), compared to scenarios without protective measures. Furthermore, the optimal number and configuration strategies of TMBIS were explored under different battery energy density scenarios, providing crucial guidelines for safety-oriented lithium-ion battery system design. The proposed TMBIS has significant potential for broad applications and substantial engineering value in future high-energy–density battery systems.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEnergy conversion and management, 1 Nov. 2025, v. 343, 120188-
dcterms.isPartOfEnergy conversion and management-
dcterms.issued2025-11-01-
dc.identifier.scopus2-s2.0-105012605103-
dc.identifier.eissn1879-2227-
dc.identifier.artn120188-
dc.description.validate202508 bchy-
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000054/2025-08en_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-01en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.