Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114736
Title: Enabling multielectron reaction of polyanionic cathodes toward high-energy calcium rechargeable batteries
Authors: Li, R 
Lee, Y
Song, Z 
Ma, S
Yi, Y 
Lin, H 
Hua, Y 
Jiang, P 
Chen, F 
Yu, J 
Pu, X 
Chen, Z 
Chan, KC 
Park, KY
Xu, ZL 
Issue Date: 2025
Source: Advanced materials, First published: 26 July 2025, Early View, https://doi.org/10.1002/adma.202506603
Abstract: Polyanionic cathode materials with robust structural stability and large Ca2+ diffusion channels have aroused great interest in propelling the development of calcium-ion batteries (CIBs). However, polyanionic cathodes usually exhibit single-electron transfer per unit, rendering limited specific capacity and energy densities. Herein, a new polyanionic CaxNaV1.5Cr0.5(PO4)3 (0 ≤ x ≤ 1.4) cathode is proposed for high-capacity and ultra-stable CIBs by unlocking 1.87-electron transfer per vanadium redox center during Ca ion insertion. The CaxNaV1.5Cr0.5(PO4)3 cathode delivers a reversible calcium storage capacity of 162 mAh g−1 at an average voltage of ≈2.5 V at 10 mA g−1, featuring a record-high energy density of ≈400 Wh kg−1. The low volume changes (∆V = 1.8%) and fast diffusion kinetics indicate excellent cycling stability of CaxNaV1.5Cr0.5(PO4)3 with capacity retentions of 98.2% and 80.8% over 600 and 5000 cycles, respectively. In Ca metal full cells made from a Ca metal anode and a compatible electrolyte, the CaxNaV1.5Cr0.5(PO4)3 presents a high energy density of 318 Wh kg−1 over 50 cycles, which rivals the state-of-the-art CIB performance. This work sheds new light on the electrochemically activated multielectron redox reactions of polyanionic cathode materials for sustainable CIBs.
Keywords: Calcium rechargeable batteries
CaxNaV1.5Cr0.5(PO4)3
Intercalation dynamics
Multielectron reaction
Publisher: Wiley-VCH
Journal: Advanced materials 
ISSN: 0935-9648
EISSN: 1521-4095
DOI: 10.1002/adma.202506603
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.