Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114720
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorXie, Wen_US
dc.creatorWang, Qen_US
dc.creatorLi, Jen_US
dc.creatorXie, Zen_US
dc.creatorShi, Jen_US
dc.creatorHuang, Xen_US
dc.creatorUsmani, Aen_US
dc.date.accessioned2025-08-20T08:38:05Z-
dc.date.available2025-08-20T08:38:05Z-
dc.identifier.issn0950-4230en_US
dc.identifier.urihttp://hdl.handle.net/10397/114720-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectFlammable gas dispersionen_US
dc.subjectUncertainty quantificationen_US
dc.subjectOpenFOAMen_US
dc.subjectParametric inverse solutionen_US
dc.subjectDeep learningen_US
dc.subjectVariational Bayesian inferenceen_US
dc.titleUncertainty quantification of flammable gas dispersion numerical models driven by hybrid variational inference deep learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1016/j.jlp.2025.105758en_US
dcterms.abstractAccurate modeling of flammable gas dispersion is essential for fire and explosion risk assessment. However, CFD models that rely on fixed hyperparameters preclude uncertainty quantification, leading to overconfidence prediction. This work proposed a hybrid deep learning framework with variational Bayesian inference to inversely solve distributions of numerical model parameters. The gas dispersion database under Froude numbers Fr is developed, which contains repetitive experimental data and corresponding numerical simulation values. CNN-AM architecture is developed to capture nonlinear relationship between model parameters and concentration outputs. Using experimental data, ADVI is employed to derive posterior distributions of the optimal model parameters. The results indicate that the parameter-optimized model obviously improves prediction accuracy for 80% scenarios, with overall error below 5%. Furthermore, spatial distribution characteristics of plumes are characterized probabilistically. Near leakage nozzles, local concentration fluctuations peak when gravity and initial momentum jointly dominate plume dynamics at Fr=74.38. In terms of plume morphology, variability in horizontal extent increases monotonically with Fr, while uncertainty in vertical drop attains a maximum at 0.060 when Fr = 55.79. These findings demonstrate the robustness of the proposed method for uncertainty quantification in gas distribution modelling, thereby enhancing risk evaluation in industries.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of loss prevention in the process industries, Available online 14 August 2025, In Press, Journal Pre-proof, 105758, https://doi.org/10.1016/j.jlp.2025.105758en_US
dcterms.isPartOfJournal of loss prevention in the process industriesen_US
dcterms.issued2025-
dc.identifier.eissn1873-3352en_US
dc.identifier.artn105758en_US
dc.description.validate202508 bcrcen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3984-
dc.identifier.SubFormID51869-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusEarly releaseen_US
dc.date.embargo0000-00-00 (to be updated)en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.