Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114647
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorMainland Development Office-
dc.creatorGong, W-
dc.creatorLiang, D-
dc.date.accessioned2025-08-18T03:02:35Z-
dc.date.available2025-08-18T03:02:35Z-
dc.identifier.issn1292-8119-
dc.identifier.urihttp://hdl.handle.net/10397/114647-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rights© The authors. Published by EDP Sciences, SMAI 2025en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Gong, W., & Liang, D. (2025). Analysis and approximation to parabolic optimal control problems with measure-valued controls in time. ESAIM: COCV, 31, 2 is available at https://doi.org/10.1051/cocv/2024085.en_US
dc.subjectError estimateen_US
dc.subjectFinite elementen_US
dc.subjectMeasure valued controlen_US
dc.subjectOptimal controlen_US
dc.subjectParabolic equationen_US
dc.titleAnalysis and approximation to parabolic optimal control problems with measure-valued controls in timeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume31-
dc.identifier.doi10.1051/cocv/2024085-
dcterms.abstractIn this paper, we investigate an optimal control problem governed by parabolic equations with measure-valued controls over time. We establish the well-posedness of the optimal control problem and derive the first-order optimality condition using Clarke’s subgradients, revealing a sparsity structure in time for the optimal control. Consequently, these optimal control problems represent a generalization of impulse control for evolution equations. To discretize the optimal control problem, we employ the space-time finite element method. Here, the state equation is approximated using piecewise linear and continuous finite elements in space, alongside a Petrov–Galerkin method utilizing piecewise constant trial functions and piecewise linear and continuous test functions in time. The control variable is discretized using the variational discretization concept. For error estimation, we initially derive a priori error estimates and stabilities for the finite element discretizations of the state and adjoint equations. Subsequently, we establish weak-* convergence for the control under the norm ℳ(Īc;L2(ω)), with a convergence order of O(h1/2 + τ1/4) for the state.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationESAIM. Control, optimisation and calculus of variations, 2025, v. 31, 2-
dcterms.isPartOfESAIM. Control, optimisation and calculus of variations-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85214509452-
dc.identifier.eissn1262-3377-
dc.identifier.artn2-
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Strategic Priority Research Program of Chinese Academy of Sciences under grant No. XDB41000000; the National Key Basic Research Program (2022YFA1004402); the National Natural Science Foundation of China under grant 12071468en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
cocv240069.pdf690.89 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.