Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114594
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorMainland Development Office-
dc.creatorChen, Pen_US
dc.creatorHou, Xen_US
dc.creatorZhang, Jen_US
dc.creatorTan, Cen_US
dc.creatorGao, Pen_US
dc.creatorLiang, Yen_US
dc.creatorTian, Xen_US
dc.creatorLiao, Len_US
dc.creatorYang, XSen_US
dc.creatorJiang, Zen_US
dc.creatorXu, Zen_US
dc.creatorWang, Jen_US
dc.creatorBai, Xen_US
dc.date.accessioned2025-08-18T03:01:58Z-
dc.date.available2025-08-18T03:01:58Z-
dc.identifier.issn2469-9950en_US
dc.identifier.urihttp://hdl.handle.net/10397/114594-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2024 American Physical Societyen_US
dc.rightsThe following publication Chen, P., Hou, X., Zhang, J., Tan, C., Gao, P., Liang, Y., Tian, X., Liao, L., Yang, X.-S., Jiang, Z., Xu, Z., Wang, J., & Bai, X. (2024). Competing effects of temperature and mechanical stress on polar vortex transition in oxide superlattices. Physical Review B, 110(19), 195417 is available at https://doi.org/10.1103/PhysRevB.110.195417.en_US
dc.titleCompeting effects of temperature and mechanical stress on polar vortex transition in oxide superlatticesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume110en_US
dc.identifier.issue19en_US
dc.identifier.doi10.1103/PhysRevB.110.195417en_US
dcterms.abstractThe interplay of different forms of energies in oxide superlattices, such as elastic, electrostatic, and gradient energies, can result in a stable long-range ordered polar vortex structure at room temperature. However, the role between these energies in determining the vortex structure still remains largely elusive due to the intricate interplay. By using a comprehensive in situ TEM apparatus and a prototype system, PbTiO3/SrTiO3 superlattice, we demonstrate that the vortex structure undergoes a first-order transition at the temperature around 653 K, while the application of in-plane mechanical stress at such a high temperature results in the reemergence of vortex structure. Cryogenic cooling to 94 K raises the stability of vortices, which would be destabilized by loading of out-of-plane mechanical stress. The results can be reproduced and well interpreted by phase-field simulations. These findings not only reveal the competing role of the temperature and mechanical stress at atomic scale but also demonstrate a feasible way to operate the vortex-based nanodevices working in harsh environments.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review B : covering condensed matter and materials physics, 15 Nov. 2024, v. 110, no. 19, 195417en_US
dcterms.isPartOfPhysical review B : covering condensed matter and materials physicsen_US
dcterms.issued2024-11-15-
dc.identifier.scopus2-s2.0-85210303467-
dc.identifier.eissn2469-9969en_US
dc.identifier.artn195417en_US
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Key R&D Program of China (Grant No. 2021YFA1400204); the program from the National Natural Science Foundation of China (Grants No. 12334001, No. 51991344, No. 11875229, No. 51872251, and No. 12402190); Chinese Academy of Science (Grants No. XDB33030200 and No. ZDYZ2015-1); the Key R&D Program of Guangdong Province (Grants No. 2018B030327001, No. 2018B010109009, and No. 2019B010931001); Bureau of Industry and Information Technology of Shenzhen (Grant No. 201901161512); Beijing Excellent Talents Training Support (Grant No. 2017000026833ZK11); the Key Research Project of Zhejiang Laboratory (Grant No. 2021PE0AC02); China Postdoctoral Science Foundation (Grants No. 2021M693368 and No. 2022T150692); the PolyU grant (Grant No. 1-CD4K); the PolyU Distinguished Postdoctoral Fellowship Scheme (Grant No. 1-YWBC)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevB.110.195417.pdf3.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.