Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114499
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorLi, Jen_US
dc.creatorCao, Hen_US
dc.creatorChen, Pen_US
dc.creatorGuo, Sen_US
dc.creatorDeng, Yen_US
dc.creatorLi, Xen_US
dc.creatorPu, Hen_US
dc.creatorBai, Yen_US
dc.creatorYao, Len_US
dc.creatorWong, WLen_US
dc.creatorZhang, Cen_US
dc.creatorFeng, Xen_US
dc.date.accessioned2025-08-11T02:35:44Z-
dc.date.available2025-08-11T02:35:44Z-
dc.identifier.issn0223-5234en_US
dc.identifier.urihttp://hdl.handle.net/10397/114499-
dc.language.isoenen_US
dc.publisherElsevier Massonen_US
dc.subjectAntimicrobial peptidomimeticsen_US
dc.subjectAntimicrobial resistanceen_US
dc.subjectBacterial membraneen_US
dc.subjectDNAen_US
dc.subjectOligopyridiniumen_US
dc.titleOligopyridinium peptidomimetics with dual bacterial membrane and DNA targeting as resistance-resistant antibacterialsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume298en_US
dc.identifier.doi10.1016/j.ejmech.2025.118025en_US
dcterms.abstractThe serious threat of multidrug-resistant (MDR) bacterial infections necessitates innovative and effective strategies to overcome antibiotic resistance. Although antimicrobial peptidomimetics (AMPMs) have demonstrated significant efficacy in addressing bacterial resistance, challenges such as low target selectivity and high toxicity remain. In an attempt to address such challenges, we designed a series of amidated oligopyridinium peptidomimetics that could target both bacterial membranes and DNA selectively over human cells. A lead compound, 1c, exhibited potent broad-spectrum antibacterial activity (MIC ≤2 μg/mL) and favorable biosafety. Mechanistic studies revealed that 1c binds to bacterial membrane components (phosphatidylglycerol and lipopolysaccharide), inducing membrane depolarization and perforation, while also selectively interacting with bacterial DNA, triggering ROS accumulation and metabolic suppression in bacterial cells. 1c can eradicate both dormant and persistent bacteria within 2 h and maintain efficacy in bacterial infection models involving sheep blood and mammalian cells. 1c showed no toxicity in Galleria mellonella larvae, zebrafish, or mice at 20 mg/kg. In vivo, it reduced bacterial loads, achieving 55 % survival in G. mellonella and 75 % survival in a murine MRSA infection model. This study demonstrates that the newly developed oligopyridinium derivatives are potent dual-targeting antimicrobial agents and may offer a promising strategy to combat MDR infections.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationEuropean journal of medicinal chemistry, 15 Nov. 2025, v. 298, 118025en_US
dcterms.isPartOfEuropean journal of medicinal chemistryen_US
dcterms.issued2025-11-15-
dc.identifier.eissn1768-3254en_US
dc.identifier.artn118025en_US
dc.description.validate202508 bcch-
dc.identifier.FolderNumbera3972-
dc.identifier.SubFormID51851-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHealth and Medical Research Fund (HMRF)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.