Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114493
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorZhang, Len_US
dc.creatorSu, Yen_US
dc.creatorZhang, Yen_US
dc.creatorSun, Pen_US
dc.creatorYe, Cen_US
dc.creatoriu, Yen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2025-08-11T02:35:12Z-
dc.date.available2025-08-11T02:35:12Z-
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/114493-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.subjectBattery safetyen_US
dc.subjectBoiling coolantsen_US
dc.subjectDirect evaporative coolingen_US
dc.subjectFire risken_US
dc.subjectInductive heatingen_US
dc.subjectMulti-dimensional scoringen_US
dc.titleEarly emergency cooling for mitigating the onset of battery thermal runawayen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume132en_US
dc.identifier.doi10.1016/j.est.2025.117820en_US
dcterms.abstractImmersion coolants are an emerging and promising technology for battery thermal management and the prevention and mitigation of battery fires. This study investigates the effect of four immersion coolants (water, HFE-7200, silicone oil, and transformer oil) and their coolant-battery volumes ratio (1/16–100) on the onset time of thermal runaway following safe venting in cylindrical batteries (SOC from 40 % to 100 %). Results reveal that within a critical time window (1–2 min after venting), a small amount of immersion coolant (1 mL and volume ratio < 1/16) can effectively suppress the battery post-venting self-heating and prevent the onset of thermal runaway. The critical immersion cooling rate versus coolant-battery ratio is quantified at different battery SOCs. As the coolant-battery ratio increases, battery mass loss, maximum temperature, maximum cooling rate, and the critical time window all decrease linearly, regardless whether thermal runaway occurs. The five-dimensional evaluation suggests the overall effect on preventing thermal runaway ranks as water, transformer oil, silicone oil, and HFE-7200. This study quantifies the optimal emergency cooling strategy to prevent or delay the onset of battery thermal runaway, providing support for the design of future battery safety management systems.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of energy storage, 15 Oct. 2025, v. 132, pt. C, 117820en_US
dcterms.isPartOfJournal of energy storageen_US
dcterms.issued2025-10-15-
dc.identifier.eissn2352-1538en_US
dc.identifier.artn117820en_US
dc.description.validate202508 bcch-
dc.identifier.FolderNumbera3967-
dc.identifier.SubFormID51846-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-10-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-10-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.