Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114492
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.contributorResearch Institute for Smart Energy-
dc.creatorSu, Yen_US
dc.creatorZhang, Len_US
dc.creatorZhou, Yen_US
dc.creatorGeng, Men_US
dc.creatorLiu, Sen_US
dc.creatorChen, Len_US
dc.creatorHuang, Xen_US
dc.date.accessioned2025-08-11T02:35:10Z-
dc.date.available2025-08-11T02:35:10Z-
dc.identifier.issn1359-4311en_US
dc.identifier.urihttp://hdl.handle.net/10397/114492-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBattery thermal managementen_US
dc.subjectFlat heat pipeen_US
dc.subjectPlacement orientationen_US
dc.subjectThermal resistance network modelen_US
dc.titleThermal management performance of flat heat pipe in prismatic battery moduleen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume279en_US
dc.identifier.doi10.1016/j.applthermaleng.2025.127747en_US
dcterms.abstractHeat pipe, as a highly effective heat transfer device, is widely applied in the field of battery thermal management system (BTMS), so its heat transfer performance is vital to battery safety. This study focuses on the influence of flat heat pipe (FHP) key parameters including orientations, arrangement and quantity on 3-cells BTMS thermal performance. Based on the baseline tests with localized heating on four FHP different orientations (gravity-supported, gravity-opposed, side-lying, and horizontal), the heat transfer performance of FHP is quantified, and the FHP-based BTMS thermal network model is developed different from the traditional thermal model. Results show that placing two heat pipes in side-lying configuration between all three cells yielded the best cooling performance, achieving average temperature below 50 °C and temperature difference within 4 °C under discharge rate of 3C without external energy input. The proposed numerical model achieves the simulating results agree with the experimental data with below 10 % discrepancy. Furthermore, this validated model extends to 10-cells and rapidly predicts the steady-state temperature distribution of the battery module under varying operation conditions within 10 s. This work proposes a framework for applying heat pipes in battery thermal management and guides cooling strategies for adopting various battery operations and preventing thermal runaway.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationApplied thermal engineering, 15 Nov. 2025, v. 279, pt. C, 127747en_US
dcterms.isPartOfApplied thermal engineeringen_US
dcterms.issued2025-11-15-
dc.identifier.eissn1873-5606en_US
dc.identifier.artn127747en_US
dc.description.validate202508 bcch-
dc.identifier.FolderNumbera3967-
dc.identifier.SubFormID51845-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.