Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114434
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineering-
dc.creatorZhou, Yen_US
dc.creatorJia, Yen_US
dc.creatorZhang, Jen_US
dc.creatorYue, Yen_US
dc.creatorWang, Zen_US
dc.creatorWang, Jen_US
dc.creatorHuang, Xen_US
dc.creatorHuang, Yen_US
dc.creatorHe, Len_US
dc.date.accessioned2025-08-06T09:12:16Z-
dc.date.available2025-08-06T09:12:16Z-
dc.identifier.issn0141-3910en_US
dc.identifier.urihttp://hdl.handle.net/10397/114434-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectFlame retardanceen_US
dc.subjectLithium-ion batteryen_US
dc.subjectThermal runaway propagationen_US
dc.subjectThermal stabilityen_US
dc.titleFire-resistant polyimide-silica composite aerogels with high thermal insulation and flame retardance towards preventing thermal runaway propagation of lithium-ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume241en_US
dc.identifier.doi10.1016/j.polymdegradstab.2025.111574en_US
dcterms.abstractThermal runaway propagation (TRP) remains a critical safety challenge in lithium-ion battery systems. Incorporating barrier materials between adjacent cells is a widely adopted and effective strategy to mitigate TRP. This study introduces a novel PI/SiO2 composite barrier material composed of polyimide aerogel (PI), hydroxyapatite nanowires (HAP), ammonium polyphosphate (APP), silica gel, and PR-MoS2/EP, designed to effectively suppress TRP. Experimental results reveal the progressively improved TRP suppression performance with the increasing thickness of barrier material. Notably, PI@SiO2/EP-3 composite fully inhibits TRP between batteries, leading to the relatively-low peak temperature (∼137 ℃) and stable voltage (∼4.136 V). Additionally, the total enthalpy exchange between two cells during TRP is decreased by 51.8 %, from 56.4 to 27.2 kJ, yielding the lowest total heat release of 0.29 MJ/m2. The survived cell exhibits the minimal changes in internal crystal structure and chemical composition. This work underscores the importance of aerogel-based barrier material in disrupting TRP pathways and presents a promising strategy for enhancing battery safety in electric vehicles, grid-scale storage, and other high-risk energy applications.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationPolymer degradation and stability, Nov. 2025, v. 241, 111574en_US
dcterms.isPartOfPolymer degradation and stabilityen_US
dcterms.issued2025-11-
dc.identifier.scopus2-s2.0-105011876849-
dc.identifier.eissn1873-2321en_US
dc.identifier.artn111574en_US
dc.description.validate202508 bcch-
dc.identifier.FolderNumbera3963b-
dc.identifier.SubFormID51839-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-11-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-11-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.