Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114432
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorWei, X-
dc.creatorYu, X-
dc.date.accessioned2025-08-06T09:12:14Z-
dc.date.available2025-08-06T09:12:14Z-
dc.identifier.issn0095-4616-
dc.identifier.urihttp://hdl.handle.net/10397/114432-
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.subjectContinuous time reinforcement learningen_US
dc.subjectIntegrated q-functionen_US
dc.subjectMean-field controlen_US
dc.subjectTest policiesen_US
dc.subjectWeak martingale characterizationen_US
dc.titleContinuous time q-learning for mean-field control problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume91-
dc.identifier.issue1-
dc.identifier.doi10.1007/s00245-024-10205-7-
dcterms.abstractThis paper studies the q-learning, recently coined as the continuous time counterpart of Q-learning by Jia and Zhou (J Mach Learn Res 24:1–61, 2023), for continuous time mean-field control problems in the setting of entropy-regularized reinforcement learning. In contrast to the single agent’s control problem in Jia and Zhou (J Mach Learn Res 24:1–61, 2023), we reveal that two different q-functions naturally arise in mean-field control problems: (i) the integrated q-function (denoted by q) as the first-order approximation of the integrated Q-function introduced in Gu et al. (Oper Res 71(4):1040–1054, 2023), which can be learnt by a weak martingale condition using all test policies; and (ii) the essential q-function (denoted by qe) that is employed in the policy improvement iterations. We show that two q-functions are related via an integral representation. Based on the weak martingale condition and our proposed searching method of test policies, some model-free learning algorithms are devised. In two examples, one in LQ control framework and one beyond LQ control framework, we can obtain the exact parameterization of the optimal value function and q-functions and illustrate our algorithms with simulation experiments.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationApplied mathematics and optimization, Feb. 2025, v. 91, no. 1, 10-
dcterms.isPartOfApplied mathematics and optimization-
dcterms.issued2025-02-
dc.identifier.scopus2-s2.0-85212399218-
dc.identifier.eissn1432-0606-
dc.identifier.artn10-
dc.description.validate202508 bcch-
dc.identifier.FolderNumbera3961en_US
dc.identifier.SubFormID51836en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-17en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-17
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.