Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114431
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorBo, L-
dc.creatorHuang, Y-
dc.creatorYu, X-
dc.date.accessioned2025-08-06T09:12:13Z-
dc.date.available2025-08-06T09:12:13Z-
dc.identifier.issn0363-0129-
dc.identifier.urihttp://hdl.handle.net/10397/114431-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2025 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Bo, L., Huang, Y., & Yu, X. (2025). On Optimal Tracking Portfolio in Incomplete Markets: The Reinforcement Learning Approach. SIAM Journal on Control and Optimization, 63(1), 321-348 is available at https://doi.org/10.1137/23m1620892.en_US
dc.subjectCapital injectionen_US
dc.subjectContinuous-time q-learningen_US
dc.subjectIncomplete marketen_US
dc.subjectOptimal tracking portfolioen_US
dc.subjectReflected diffusion processen_US
dc.titleOn optimal tracking portfolio in incomplete markets : the reinforcement learning approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage321-
dc.identifier.epage348-
dc.identifier.volume63-
dc.identifier.issue1-
dc.identifier.doi10.1137/23M1620892-
dcterms.abstractThis paper studies an infinite horizon optimal tracking portfolio problem using capital injection in incomplete market models. The benchmark process is modeled by a geometric Brownian motion with zero drift driven by some unhedgeable risk. The relaxed tracking formulation is adopted where the fund account is compensated by the injected capital needs to outperform the benchmark process at any time, and the goal is to minimize the cost of the discounted total capital injection. When model parameters are known, we formulate the equivalent auxiliary control problem with reflected state dynamics, for which the classical solution of the HJB equation with Neumann boundary condition is obtained explicitly. When model parameters are unknown, we introduce the exploratory formulation for the auxiliary control problem with entropy regularization and develop the continuous-time q-learning algorithm in models of reflected diffusion processes. In some illustrative numerical examples, we show the satisfactory performance of the q-learning algorithm.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2025, v. 63, no. 1, p. 321-348-
dcterms.isPartOfSIAM journal on control and optimization-
dcterms.issued2025-
dc.identifier.scopus2-s2.0-85218636131-
dc.identifier.eissn1095-7138-
dc.description.validate202508 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3961en_US
dc.identifier.SubFormID51835en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1620892.pdf784 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.