Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114376
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligenceen_US
dc.creatorLi, Ben_US
dc.creatorPan, Sen_US
dc.creatorQian, Yen_US
dc.date.accessioned2025-07-29T03:33:21Z-
dc.date.available2025-07-29T03:33:21Z-
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://hdl.handle.net/10397/114376-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectImage reconstructionen_US
dc.subjectLow-rank factorizationen_US
dc.subjectSubgradient methoden_US
dc.subjectTotal variationen_US
dc.titleFactorization model with total variation regularizer for image reconstruction and subgradient algorithmen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume170en_US
dc.identifier.doi10.1016/j.patcog.2025.112038en_US
dcterms.abstractThis paper concerns the reconstruction of images in which the pixels of images are missing and the observations are corrupted by noise. By leveraging the approximate low-rank and gradient smoothing prior information of images, we propose a factorization model with the total variation (TV) and a weakly convex surrogate of column ℓ2,0-norm regularizers. This model avoids the computation cost of SVDs required by those models of full matrix variables, and moreover, the TV regularizer accounts for the edge structure of the target image, and the weakly convex surrogate of column ℓ2,0-norm of factor matrices considers the rough upper estimation for the true rank. For the proposed nonconvex and nonsmooth model, we develop an efficient subgradient algorithm, and prove that any cluster point of its iterate sequence is a stationary point and the cost value sequence converges to a critical value. Numerical experiments are conducted on color images and hyperspectral images with pixel missing and observation that is corrupted by Gaussian or impulse noise. Numerical comparisons with seven state-of-art methods for color image reconstruction and one deep leaning method for hyperspectral image restoration validate the efficiency of the proposed method.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationPattern recognition, Feb. 2026, v. 170, 112038en_US
dcterms.isPartOfPattern recognitionen_US
dcterms.issued2026-02-
dc.identifier.scopus2-s2.0-105009857278-
dc.identifier.eissn1873-5142en_US
dc.identifier.artn112038en_US
dc.description.validate202507 bchyen_US
dc.description.oaNot applicableen_US
dc.identifier.SubFormIDG000037/2025-07-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis work is funded by the National Natural Science Foundation of China under project No. 12371299. The authors would like to express their sincere thanks to Professor Saeedi and Professor Sun for sharing with their TNNR-IDD and GLRTV code.en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2028-02-29en_US
dc.description.oaCategoryGreen (AAM)en_US
dc.relation.rdatahttps://github.com/SCUT-OptGroup/subG_codeen_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2028-02-29
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.