Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114322
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorMainland Development Officeen_US
dc.creatorZhang, Hen_US
dc.creatorLiu, Jen_US
dc.creatorXu, Zen_US
dc.creatorBu, Yen_US
dc.creatorWu, TSen_US
dc.creatorTu, WMen_US
dc.creatorSoo, YLen_US
dc.creatorLin, Cen_US
dc.creatorZhu, Yen_US
dc.creatorLei, Qen_US
dc.creatorYin, Jen_US
dc.creatorLo, TWBen_US
dc.date.accessioned2025-07-24T02:01:45Z-
dc.date.available2025-07-24T02:01:45Z-
dc.identifier.urihttp://hdl.handle.net/10397/114322-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2025 The Authors. Published by American Chemical Societyen_US
dc.rightsThis article is licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)en_US
dc.rightsThe following publication Zhang, H., Liu, J., Xu, Z., Bu, Y., Wu, T. S., Tu, W. M., ... & Lo, T. W. B. (2025). Tailoring Cu-Based Nanoalloys for Highly Selective Electrochemical Urea Synthesis from CO2 and Nitrate. ACS Catalysis, 15(11), 8966-8978 is available at https://doi.org/10.1021/acscatal.5c01960.en_US
dc.subjectCarbon dioxide reductionen_US
dc.subjectCu−Bi alloyen_US
dc.subjectC−N couplingen_US
dc.subjectElectrocatalysisen_US
dc.subjectNitrate reductionen_US
dc.subjectUreaen_US
dc.titleTailoring Cu-based nanoalloys for highly selective electrochemical urea synthesis from C0₂ and nitrateen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage8966en_US
dc.identifier.epage8978en_US
dc.identifier.volume15en_US
dc.identifier.issue11en_US
dc.identifier.doi10.1021/acscatal.5c01960en_US
dcterms.abstractThe current carbon and nitrogen cycles, as driven by human activity, are characterized by high energy consumption, especially in the context of excessive CO2 emissions. To establish a commercially viable electrochemical coupling of nitrate and CO2 for urea production, developing a highly selective catalyst is crucial. In this study, we synthesized a series of ultrafine Cu-M (M = Bi, In, and Pb) nanoalloy catalysts using electrodeposition. We employed a phenanthroline-mediated approach to carefully control the dopant composition and nanoalloy size by regulating the electrodeposition kinetics. Our ultrafine Cu–Bi0.1 catalyst achieved a significantly enhanced Faradaic efficiency for urea production of 89.4% at −1.0 V vs RHE, compared to 41.5% for the Cu control. Operando Raman and Fourier-transform infrared spectroscopy provided compelling evidence supporting our catalytic findings. The remarkable selectivity to urea observed with our Cu–Bi0.1 catalyst originates from the stabilization of *CO and *NO2 intermediates. Through extensive theoretical calculations, we found that the presence of Bi in the Cu domain enhances urea formation both thermodynamically and kinetically. This work presents a promising chemical protocol for designing next-generation nanoalloy catalytic materials with enhanced properties.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS catalysis, 6 June 2025, v. 15, no. 11, p. 8966-8978en_US
dcterms.isPartOfACS catalysisen_US
dcterms.issued2025-06-06-
dc.identifier.scopus2-s2.0-105005064518-
dc.identifier.eissn2155-5435en_US
dc.description.validate202507 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3939, OA_TA-
dc.identifier.SubFormID51742-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.TAACS (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Tailoring_Cu-based_Nnanoalloys.pdf13.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.