Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114321
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.contributorMainland Development Office-
dc.creatorFeng, J-
dc.creatorWong, KY-
dc.creatorLee, CY-
dc.date.accessioned2025-07-24T02:01:44Z-
dc.date.available2025-07-24T02:01:44Z-
dc.identifier.issn0323-3847-
dc.identifier.urihttp://hdl.handle.net/10397/114321-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectBiased samplingen_US
dc.subjectEmpirical likelihooden_US
dc.subjectGoodness-of-fiten_US
dc.subjectLogistic regression modelen_US
dc.subjectScore testen_US
dc.titleA semiparametric two-sample density ratio model with a change pointen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume66-
dc.identifier.issue8-
dc.identifier.doi10.1002/bimj.202300214-
dcterms.abstractThe logistic regression model for a binary outcome with a continuous covariate can be expressed equivalently as a two-sample density ratio model for the covariate. Utilizing this equivalence, we study a change-point logistic regression model within the corresponding density ratio modeling framework. We investigate estimation and inference methods for the density ratio model and develop maximal score-type tests to detect the presence of a change point. In contrast to existing work, the density ratio modeling framework facilitates the development of a natural Kolmogorov–Smirnov type test to assess the validity of the logistic model assumptions. A simulation study is conducted to evaluate the finite-sample performance of the proposed tests and estimation methods. We illustrate the proposed approach using a mother-to-child HIV-1 transmission data set and an oral cancer data set.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationBiometrical journal, Dec. 2024, v. 66, no. 8, e202300214-
dcterms.isPartOfBiometrical journal-
dcterms.issued2024-12-
dc.identifier.scopus2-s2.0-85210157282-
dc.identifier.eissn1521-4036-
dc.identifier.artne202300214-
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3938en_US
dc.identifier.SubFormID51740en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.fundingTextGuangDong Basic and Applied Basic Research Foundationen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-12-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-12-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.