Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/114321
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.contributor | Mainland Development Office | - |
| dc.creator | Feng, J | - |
| dc.creator | Wong, KY | - |
| dc.creator | Lee, CY | - |
| dc.date.accessioned | 2025-07-24T02:01:44Z | - |
| dc.date.available | 2025-07-24T02:01:44Z | - |
| dc.identifier.issn | 0323-3847 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/114321 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley-VCH Verlag GmbH & Co. KGaA | en_US |
| dc.subject | Biased sampling | en_US |
| dc.subject | Empirical likelihood | en_US |
| dc.subject | Goodness-of-fit | en_US |
| dc.subject | Logistic regression model | en_US |
| dc.subject | Score test | en_US |
| dc.title | A semiparametric two-sample density ratio model with a change point | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 66 | - |
| dc.identifier.issue | 8 | - |
| dc.identifier.doi | 10.1002/bimj.202300214 | - |
| dcterms.abstract | The logistic regression model for a binary outcome with a continuous covariate can be expressed equivalently as a two-sample density ratio model for the covariate. Utilizing this equivalence, we study a change-point logistic regression model within the corresponding density ratio modeling framework. We investigate estimation and inference methods for the density ratio model and develop maximal score-type tests to detect the presence of a change point. In contrast to existing work, the density ratio modeling framework facilitates the development of a natural Kolmogorov–Smirnov type test to assess the validity of the logistic model assumptions. A simulation study is conducted to evaluate the finite-sample performance of the proposed tests and estimation methods. We illustrate the proposed approach using a mother-to-child HIV-1 transmission data set and an oral cancer data set. | - |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Biometrical journal, Dec. 2024, v. 66, no. 8, e202300214 | - |
| dcterms.isPartOf | Biometrical journal | - |
| dcterms.issued | 2024-12 | - |
| dc.identifier.scopus | 2-s2.0-85210157282 | - |
| dc.identifier.eissn | 1521-4036 | - |
| dc.identifier.artn | e202300214 | - |
| dc.description.validate | 202507 bcch | - |
| dc.identifier.FolderNumber | a3938 | en_US |
| dc.identifier.SubFormID | 51740 | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | The Hong Kong Polytechnic University | en_US |
| dc.description.fundingText | GuangDong Basic and Applied Basic Research Foundation | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2025-12-31 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



