Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/114312
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.contributorMainland Development Office-
dc.creatorNg, HMen_US
dc.creatorWong, KYen_US
dc.date.accessioned2025-07-24T02:01:40Z-
dc.date.available2025-07-24T02:01:40Z-
dc.identifier.issn1380-7870en_US
dc.identifier.urihttp://hdl.handle.net/10397/114312-
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.subjectCensored dataen_US
dc.subjectKernel smoothingen_US
dc.subjectSemiparametric modelen_US
dc.subjectSurvival analysisen_US
dc.titleA global kernel estimator for partially linear varying coefficient additive hazards modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage205en_US
dc.identifier.epage232en_US
dc.identifier.volume31en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s10985-024-09645-8en_US
dcterms.abstractWe study kernel-based estimation methods for partially linear varying coefficient additive hazards models, where the effects of one type of covariates can be modified by another. Existing kernel estimation methods for varying coefficient models often use a “local” approach, where only a small local neighborhood of subjects are used for estimating the varying coefficient functions. Such a local approach, however, is generally inefficient as information about some non-varying nuisance parameter from subjects outside the neighborhood is discarded. In this paper, we develop a “global” kernel estimator that simultaneously estimates the varying coefficients over the entire domains of the functions, leveraging the non-varying nature of the nuisance parameter. We establish the consistency and asymptotic normality of the proposed estimators. The theoretical developments are substantially more challenging than those of the local methods, as the dimension of the global estimator increases with the sample size. We conduct extensive simulation studies to demonstrate the feasibility and superior performance of the proposed methods compared with existing local methods and provide an application to a motivating cancer genomic study.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationLifetime data analysis, Jan. 2025, v. 31, no. 1, p. 205-232en_US
dcterms.isPartOfLifetime data analysisen_US
dcterms.issued2025-01-
dc.identifier.scopus2-s2.0-85216715377-
dc.identifier.eissn1572-9249en_US
dc.description.validate202507 bcch-
dc.identifier.FolderNumbera3930a-
dc.identifier.SubFormID51712-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-31en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-31
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.